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Preface

Talk not meant as an overview of accelerator R&D

in the AP group — rather, an overview of

one of the top AP group priorities:

to understand the observed single bunch instability

Acknowledgements

AP Group: Y.-C. Chae, Z. Huang, E. Lessner, S. Milton,
V. Sajaev, C.-X. Wang

Other APS groups: M. Borland, L. Emery, A. Lumpkin,
N. Sereno, B. Yang

APS Impedance, Instability, Feedback Task Force

K. Harkay IU-ANL-FNAL 10/4/2002



Outline

« Motivation

» Sources of machine coupling impedance
» Experimental observations

» Theoretical speculations

e Future R&D

K. Harkay IU-ANL-FNAL 10/4/2002



Motivation

Typically deliver 100 mA electron beam in 23 bunches
(4.3 mA/bunch) for normal operation for users

Horizontal instability (centroid oscillations) observed
above about 5 mA/bunch — this is above the transverse
mode-coupling instability (TMCI) threshold

Normal operation with high positive chromaticity allows
a single bunch intensity limit > TMCI limit: up to about
10 mA. However, beam properties (effective emittance)
degraded above TMCI limit.

Addition over time of small-gap insertion device
chambers, a major source of coupling impedance, has

o resulted in lowered single bunch instability and
intensity limit

0 required operation with higher chromaticity and
smaller beta functions to restore

Need to understand physics and how to control instability
in order to

o satisfy anticipated future user requirement for higher
bunch current

o anticipate effect of additional small-gap insertion
device chambers and influence design

0 mitigate instability while preserving beam quality, in
particular, beam lifetime (e.qg. effect of high
chromaticity)
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25 of 40 sectors are occupied with photon
beamlines: bending magnet and insertion

device (ID) synchrotron radiation
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Typical APS storage ring sector
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Main Sources of Impedance in the SR

Single bunch instabilities
« small-gap ID chambers
0 resistive wall impedance
0 geometric impedance (transitions)
» other discontinuities: rf fingers, kickers, scraper “cavity”

» “trapped” chamber modes?

Multibunch instabilities
 rf cavity higher-order modes
» other discontinuities: scraper “cavity”

» “trapped” chamber modes?
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APS Storage Ring chambers
Standard

antechamber radiation slot beam chamber

8-mm gap ID chamber
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One Sector of the Advanced Photon Source Storage Ring
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Side view

Small-gap ID chambers are located in 5-m straight sections
(total no.: 22 with 8-mm gap, 2 with 5-mm gap, 1 with 19.6-mm gap)
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Transverse Mode-Coupling Instability
(a.k.a. strong head-tail, fast head-tail, transverse turbulence)

from A. Chao, Physics of Collective Beam Instabilities in High Energy
Accelerators, John Wiley & Sons (1993):

T T T

=2

0 0.1 0.2 0.3 0.4

Figure 8.36. Transverse mode frequencies (1 —wy) /w, versus the parometer T* for on
oir-bog beam with the impedance (8.224). The instability threshold is located of Ty, = 0.28,
where the modes | =0 and — 1 become degenerote. The dashed curves give the imoginary part

of the mode frequencies for | =0 and [ = - 1.

*
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Tune slope, Av/Al, from transverse reactive wake:

Av - Vo (BIR
Al - o, Ele Zo()

where R = ring radius, Z(«) = effective impedance
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Single bunch instability: transverse mode coupling instability
Force due to transverse wake defocuses beam, i.e., detunes betatron frequency.

When vg crosses (mvs) modulation sidebands, synchrotron motion can couple to transverse
plane and beam can be lost unless chromaticity sufficiently large/positive.

Tune slope increases with no. of small gap chambers: mode merging threshold decreases.
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(data courtesy of L. Emery [K. Harkay et d., Proc. of 1999 PAC, 1644])
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Early data using beam position monitor turn-by-turn histories showed horizontal centroid oscillations
whose bunch intensity instability onset and mode (bursting vs. steady-state amplitude) varied with
rf voltage (chromaticities: & = 1.3, &, = 3.9) (2/15/1999)
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Large <x> oscillations above mode-merging threshold (Vs 9.4 MV case shown):

some Users will observe an effective emittance blowup, Ag,
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Note: bunch length o,, energy spread o, and emittance g, also vary with current
(e« decoherence NOT 100% of <x> oscillation amplitude; o, = 220 um (7.5 nm-r lattice))
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Variations with different machine parameters

7.5 nm lattice, Vrf = 7.3 MV, &, = (3,6)

3.9 nm lattice,
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Dual-sweep streak camera horizontal image of single bunch undergoing coherent
horizontal oscillations in bursting mode: bunch does not completely decohere
[data courtesy of B. Yang; K. Harkay et al., Proc of 1999 PAC, 1644]
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Measured bunch lengthening vs Vi
(L. Emery, M. Borland, A. Lumpkin)
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ENERGY SPREAD AS A FUNCTION BUNCH CURRENT
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Measured 6 and &, vs |,

(another method: note &, differs from the previous figure)
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8-mm gap ID vacuum chamber impedance

Z, (effective) estimated five ways:

1. Zy = (Zrw + Zgeom) determined experimentally from change in
tune slope, Av/Al, as a function of no. of chambers [N. Sereno et al,
Proc. of 1997 PAC, 1700].

Z, = 53 kQ/m per chamber x 20 = 1.1 MQ/m

2. Simulations with Z, represented by broad-band resonator
impedance model reproduced measured tune slope and
intensity threshold for TMCI at low chromaticity [K. Harkay et al,
Proc. of 1999 PAC, 1644].

exp: Av,/Al = -8x10™/mA AVyIAl = -2.6x10°/mA
model: 0.2 MQ/m 1.2 MQ/m
ltmer thresh: 4.4 mA 2.2 mA

3. Impedance calculated: resistive wall and geometric

a. resistive wall O 1/b®

21, _clvsgn(@)]

Y

L @ 7m0

0 [kQO_ 25500

=1 i G
L Bm i IO ]

f = cutoff frequency = c/21b = 13 GHz

G, O z

G1y = 0.825 [Gluckstern and van Zeijts, CERN SL/AP 92-25, Jun 1992]

Zrw (per 8-mm chamber, L =5 m) = 3.4 kQ/m
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b. geometric (transition): assuming a perfectly conducting

circularly cylindrical tube of half-height b=4 mm, angle 0 [Bane
and Krinsky, Proc. of 1993 PAC, 3375]

_Zoc e 14
W = =0~ E& ex 4 x10~" Q/m-s per transition
R bt V27TJS pgasﬁz P
Zg =2 x (0s/C)Wp = 26 kQ/m (5-mm: Zg = 55 kQ/m)

Zg=20x26=0.5MQ/m

c. total per 8-mm chamber:
Zy=Zpw + Zyg=3.4+ 26 =30 KkQ/m
c. total per 5-mm chamber:

Zy=Zprwt+Zyg=12 + (2.1 x 26) = 67 kQ/m

4. MAFIA calculations of wake potentials: Zg from extracted tune
slopes for geometric component (Y.-C. Chae)

(next talk)

5. Local bump method Z, measurements [L. Emery, G. Decker, J.
Galayda, Proc. of 2001 PAC, 1823]

5-mm: Z, [kQ/m] = 96 + 8 (ID3); 78 = 14 (ID4)
8-mm: Z, = 16 kQ/m

6. Local betatron phase shift [v. Sajaev]

Work in progress: preliminary results in agreement with #4 & #5
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Progress/speculation in understanding collective
transverse behavior above TMCI threshold

» Transverse instability occurring simultaneously with
longitudinal instabilities: bunch lengthening due to potential
well distortion and growth in energy spread due to
microwave instability — attempt to separate bunch length
dependence (peak current), resonance between betatron
and synchrotron tunes, and Landau damping due to energy
spread (i.e., tune spread)

» Transverse instability growth rate not linear with bunch
current — nonlinear effects

» Transverse oscillation amplitude dependence

0 saturates with increasing current in steady-state mode
(due to amplitude-dependent tune)

0 no simple dependence of amplitude on rf voltage or
beam current in bursting mode (resonant effect?)

» Explore possibility of coupling of transverse and longitudinal
collective motion described in literature:

o0 R.D. Kohaupt (DESY reports, ca. 1985)

o C. Besnier, D. Brandt, B. Zotter (Particle Accelerators
17, 1985)

o Yong Ho Chin (DESY 86-081, 1986)
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TBD: Transverse driving impedance from
linear instability theory

Coasting beam equation of motion [B. zotter and F. Sacherer, CERN 77-13,
1977]:

2
R+v2ax=—jC By Zo(w)l
Ele 2R

Assuming a time dependence of exp(jut), where
w=wp =(p+V)up +Ad:

: 2
frequency shift; 0(Aw) = ZVJ% CEfeX D(ZZDR(;’))'

growth rate: Yr=-0(Aw) 0 0(Zn(w))

For bunched beam, need to sum over bunch spectrum

; 2
frequency shift: D(Aw),,, = (1+1m) 2vjwo CE/ﬂeX ;—bD(Zeﬁ )
4

Y Zpy{esp Pmlecp - )

_Dp ) .
where Zy = %hm(a)p—wg)

, I = current/bunch, oy =§wo

For a broadband impedance, where Z; smooth (approx. true for
ID chamber impedance):

.2
()= 5 G Dlzoler)

This is almost the coasting beam result. If «; can be varied,
0(z5(w)) can be deduced by measuring the growth rate 0(Z(w))
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Measured growth rate as a function of horizontal chromaticity (bursting mode)
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Saturation amplitude varies with change in amplitude-dependent tune, Av,/N,, in
expected direction (N, = x-amplitude) (rise time approx. constant: 1 ms)

(second-order effect of changing harmonic-correcting sextupoles S1, S2 —
coefficients per E. Crosbie)
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3.1, 8.2, /.9 mA, respe
L L L L T

T ST S2 nom NX max:
| m Nz 257 +20%
tm Nz +267z - 950%

I T T

158B:P2

O 10 20 30 40 50 60
time (ms)
Tue Aug 14 11:44:29 2001

K. Harkay IU-ANL-FNAL 10/4/2002 24



Possible x-z parametric resonance?

Self-excited v, and v tune lines appear to vary out-of-phase over a burst.

5.2 mA §=1.5, £=42 S20B:P5-002
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Middle burst: v appears to rise first, then drops as vy reaches a peak. After
the peak, v rises again as v, drops, then vy also drops.
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Future R&D

Coupling impedance database (Chae et al.)
0 Local bump method (PACO1 — Z,)
o0 Local tune shift (V. Sajaev, C.-X. Wang — Zy,)
o MAFIA calculations (PACO1 - Z,)
Characterize longitudinal instability — validate Z;,

o Apply Z; calculated from MAFIA to model with elegant
code to reproduce bunch lengthening, Acy/Al, and
microwave instability, Ad/Al

Characterize transverse instability — validate Z

o Instability threshold, growth rate, and saturation
amplitude vs Vi, &, Av,/N,, dispersion

Instability photon diagnostics

0 Details of decoherence over bursts
Other supporting analysis

o Amplitude-dependent tune

0 Measure frequency spectrum evolution to look for

mode-coupling and/or parametric resonance signatures
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