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Abstract

Weiming Guo

Quadrupole Mode Perturbation in Storage Rings

Quadrupole mode oscillation(QMO) means the second moments of a system oscil-
lating with time, or, the elliptical torus of the Hamiltonian rotating in phase space.
We study the QMO in storage rings. In the transverse direction the QMO can be
excited by an rf quadrupole. The strength of the rf quadrupole varies with time, and
the oscillation frequency w,, must be close to twice the transverse betatron oscilla-
tion frequency w,. The perturbation equation is solved with the Hamiltonian method
and we found the beam satisfies Boltzmann distribution. Mathieu instability occurs
when 2(wy, — Ciwy) < Wy, < 2(wy + Ciwy), where Cy is the effective strength of the rf
quadrupole and wy is the revolution frequency. When a nonlinear detuning term is in-
cluded, the multi-particle system will bifurcate after passing through the thresholds.
The QMO can be detected by a Beam Position Monitor(BPM), and the emittance of
the beam can be derived from the signal. The other applications of quadrupole mode
perturbation include mismatch correction and spin resonance overcoming.

In the longitudinal direction voltage modulation induces QMO. The Hamiltonian
has the same form as the transverse nonlinear QMO Hamiltonian, therefore the beam
dynamics and the properties are similar. QMO in the longitudinal direction can be
used to compress the bunch in storage rings. Our research results show that the bunch
can be compressed by a factor of 2~3 in proton storage rings. This factor is smaller
in electron storage rings due to radiation damping and quantum fluctuation. A more
effective method, however, is using a harmonic cavity. Both methods are explored in

the second part of this dissertation.
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Transverse Motion in Storage Rings 1

Chapter 1

Transverse Motion in Storage

Rings

1.1 Hill’s Equation

Particle motion in accelerators must be stable in three dimensions. In the transverse
direction this is realized by deploying focusing instruments along the path of the beam.
The focusing instruments include electric or magnetic quadrupoles and solenoids etc.

The transverse motion in a storage ring is given by Hill’s equation, namely
y'+ Ky(s)y =0, (1.1)

where the double prime means the second derivative with respect to s, the path length
along the accelerator, y can be either the horizontal (x) or vertical(z) coordinate,
K.(s) = 1/p* — Bi(s)/Bp, K,(s) = Bi(s)/Bp, Bi(s) = 0B,/0z, and Bp is the
magnetic rigidity (momentum over charge) of the particle. In order to keep the motion
stable, K,(s) is presumed to be greater than zero, however, K,(s) with alternative

signs can also focus the beam.



2 1. Transverse Motion in Storage Rings

The solution of Hill’s equation with constant K, is given by

Acos(VKs + ¢) K>0
y(s)=4 As+ B K=0, (1.2)

Acosh(v=Ks+¢) K <0
where A, B, ¢ are integration constants to be determined by the initial conditions.
Take a focusing quadrupole as an example, i.e., K > 0, and assume the phase space

coordinate at the entrance of the quadrupole is (o, y;), then at the exit

y = ypcos VKI + yh/VK sin VKI
Y = —yo\/Fsin\/El—l-yéCOS\/El ’

This is clearer in the matrix presentation

Y cos VKI 1/\/1_(sin\/?l Yo (1.4)
= X .

Y —VK sin VKl cos VKI n

One can easily verify that the determinant of the matrix is 1. Therefore the area in

(1.3)

phase space is preserved during this transformation. In storage rings, Hill’s equation

has periodic boundary condition, i.e.,
K(s+ L) = K(s), (1.5)

where L is either the length of the ring or the length of the repetitive modules in the
ring. According to Floquet’s theorem, Hill’s equation has solutions of the following

form
y(s) = Aw(s) cos(¥(s) + t), (1.6)

where w(s + L) = w(s), ¥(s+ L) = ¥(s) + v, 1o is a constant phase advance.

Substituting into Hill’s equation, one obtains

2w (s)"(s)" + w(s)y” =0

. (1.7)
w(s)" + K(s)w(s) —w(s)(¥(s))? = 0



1.1 Hill’s Equation 3

The first equation of (1.7) can be rewritten as (w?(s)y’)’ = 0, or, Y¥'w?(s) = constant.
The solution is not changed if we multiply w(s) by a constant. Therefore we can define

¢! = 1/w?(s), and the second equation of (1.7) becomes

w(s)" + K(s)w(s) — 1/w(s)® = 0. (1.8)

Although we still don’t know w(s) for any particular K (s), we obtain the important
relation between the oscillation amplitude w(s) and the phase changing rate ¢, so
we know how to describe the motion in storage rings. Defining the Courant-Snyder
parameters «, 3,7 as

2

= w
a = -p4'/2, (1.9)
vo= 1—|—ﬁo¢2

one gets the general solution of Hill’s equation

y(s) = A/ By(s) cos(y(s) + &), (1.10)
where 9, (s) = [ 52 70> and J satisfies
—/3"+K5——[1 (gl)]—O,or o/:Kﬁ—%(l—i—aZ). (1.11)

Again if we assume the initial condition at position s; is (y1,y]), then at position s,

Yo \/ B &(cosdj—i-al sin 1)) VB1B2sin v Y1 (112)
yh 1%11;2 sin) + ‘“T g2 cos 1) g (cos ) — ap sin 1) Y,
where 1 = 1(s3) —1(s1) is the phase advance. According to Floquet’s theorem, after
a periodic length L w(s + L) = w(s), a1, B1,71 equals ag, fa, 72 respectively. If we

denote these functions by «, 3,7 and denote ® as the phase advance, the transfer

matrix can be written as

cos ® 4+ asin @ [ sin ®
M($1+L|$1) = . (]_]_3)

—vsin ® cos® — asin®



4 1. Transverse Motion in Storage Rings

Notice that the transfer matrix in Eq. (1.12) can be written as

Vi 0 cos sin 10
M (sz|s1) = ” ) _ v v VA , (1.14)
-5 —sinvy cos) W/ VB

which suggests if we transfer the phase space coordinates (y, y') into some normalized

phase space coordinates, then the particle motion in phase space

is just coordinate

rotation. And this is what we are going to do in the next section. The basics of

canonical transformation can be found in Appendix A.

1.2 Hamilton Dynamics Applying to accelerator

physics

The Hill’s equation can be derived from the following Hamiltonian

1 1
H == 2 K 2

From Eq. (1.10) one obtains

/BI

y = %A\/Bcosw — %A\/BsindJ = —g(tanw —=).

3 2

This suggests a generating function

Y 2 !
R = [y =~ Fan - 5),

hence the conjugate action variable is

8F1 y2

J:—%:%sec

1
2, _ 2 ' 2
v = 550"+ (Y + o)’
and the new Hamiltonian is given by

FI:H+@.
0s

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)



1.2 Hamilton Dynamics Applying to accelerator physics 5

However,
oF, y? 5"
— ta 2 1.20
5 = o tan v — 82 + o (1.20)
and notice that
1y'2 (sec Y —1—pF'tany) + ﬁ—IQ) (1.21)
2 252 4
Therefore
oF, _ y2 2 1 " 2 BIQ
H+E_2—ﬁ2(Kﬁ +§ﬁﬁ + sec w—l—I). (1.22)
From Eq. (1.11), we know
1 2
KpB? + Eﬁﬁ” - % —-1=0. (1.23)
Hence finally one obtains
2
- Y 9 J
H="2_ ==, 1.24
25 sec” 3 ( )

We have now transformed the Hamiltonian from (y,y') phase space to action-angle

phase space. The Hamilton Equations are

W= oH 1
- Alo) (1.25)
Jo= ==
(

Therefore J is an invariant. Note H still depends on s because S(s) is not constant.

Sometimes it is useful to have a constant Hamiltonian. With the generating function

By, I) = ¢/ + v,0) (1.26)

where v, = L [*TC 45 i5 the tune of the storage ring, and C is the circumference
Y 2w Js By (s)

of the ring. The new conjugate coordinates (®,I) are

d =1 — / + 1,0, I=1J, (1.27)
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and the new Hamiltonian becomes H = vyI/R. Changing the time coordinate from

s to #, the new Hamiltonian is re-scaled and becomes
H=uy,l. (1.28)

From Eq. (1.18), we find

y = +/28J cos 1, y' = —\/%(sin@b—i-acostb), (1.29)

where o = —3'/2. Sometimes it is more convenient to define the normalized conjugate

phase-space coordinate (Y, P,) as

Y = +/28J cos, P, = —+/2BJsinv, (1.30)

A particle trajectory in (Y, P,) phase space is a circle with radius /23J. Now that §
is a constant at one location, J has the meaning of the square of the radius divided

by 23. Expressing J in terms of y and 7/, one gets

! ]' ! ! I
Cly,y) = B[y2 + (ay + BY)*] = 79> + 2ayy’ + By” = 2.J. (1.31)

This indicates the trajectory of particle motion with initial condition (yq, y;) follows
an ellipse described by C(y,y') = 2J. And the phase space enclosed by the ellipse is
equal to 27.J, which is a constant independent of location s. From this we are going

to derive the concept of emittance in the next section.

1.3 Beam Distribution and Emittance

Usually there are a large number of particles in one bunch. For example, A 1.6 mA
bunch with the revolution frequency of 1M Hz has 10'° unit charge particles. The
particles are distributed in phase space. The quality of the beam depends on particle

distribution. On the other hand the particle distribution also affects the collective
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motion of the beam. As we stated in the first section, the phase space area enclosed
by the trace of one particle is preserved in case of linear motion. We use emittance to
describe the quality of the beam. The physical meaning of emittance is the average
area of all particles in phase space. For example, the emittance of a bunch with a

normalized distribution function p(J, 1) is given by

2w 00
€= / dzb/ dJJp(J, ). (1.32)
0 0
If the distribution is Gaussian, namely

P ) = ——e e, (1.33)

2meg

then the area enclosed by one particle is 27J, and the integral in Eq. (1.32) is €.
Therefore the emittance equals 27 times the average of the action. Statistically there
is another way to calculate the emittance, i.e., by calculating the moments of the
beam. In (y,y’) phase space with a normalized distribution function p(y,y’), the first

and second moments of the beam are given by

() = [Cody [ . dy'yn(y,y),

W) = [Sdy 2 dy'y'o(y,y),

or = [T dy [ dy y—( )2, (1.34)
oy = [Tdy [T dy' (Y — ()

oy = [Tndy [Tody'(y— W)W — () = royoy,

where o, is the rms beam width, o,/ is the rms beam height in phase space, o, is
the correlation between them and r the correlation coefficient. The rms emittance is

then calculated by

€rms = Ty /0505 ajy, = ooy V1 —12 (1.35)

Note the emittance calculated by Eq. (1.35) is only equivalent to that by Eq. (1.32)

in case of linear motion.
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Chapter 2

Problem to Solve

2.1 Time Dependent Perturbation

In chapter one we showed the transverse motion of particles in storage rings is gov-
erned by the Hill’s equation. The solution is a quasi-harmonic oscillator and can
be described by the Courant-Snyder parameters. However, in some cases, when we
model wake field, space charge effect or small disturbances caused by noise, we have

to solve the perturbed equation
v+ K, (s)y = A(y) sinwt. (2.1)

The particular forms for different situations might be different, but they all share
the same feature, i.e., the quasi-harmonic equation is perturbed by a time-dependent
term A(y)sinwt. If A(y) is a constant, it is called dipole mode perturbation. For

example, the betatron motion under the excitation of an rf dipole is described by such

an equation with A = —Bgff), where By, (s) is the amplitude of the rf dipole field,
and Bp is the magnetic rigidity of the particle. This dipole mode perturbation is well
understood and has been successfully applied to overcoming spin resonance, which,

actually stimulated the original idea of this dissertation [2]. If A(y) = cy, where c is
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a constant, then we call the term at RHS quadrupole mode perturbation. Note this
perturbation term is both a function of oscillation amplitude y and time ¢, therefore
it can not be generated by an ordinary quadrupole. Since the strength oscillates with
time, it must be a time-dependent quadrupole. As is shown later, the effect of this
term is negligible unless w/wy is close to twice of the tune v,, where wy is the angular
revolution frequency. If K, is a constant, then the quadrupole mode perturbation
equation is just the Mathieu Equation. We are going to find out the solution to this
equation with K, (s) as a function of s to understand the physics of quadrupole mode
oscillation. We then apply the solution to several aspects of accelerator physics.

Note we are not dealing with a single particle, therefore the perturbation must be
understood in an ensemble picture and the particle distribution will be involved. We
are concerned more with the final equilibrium state than the transient states, hence
Landau Damping is also included in our scope.

Instead of solving the differential equation directly, the classical Hamiltonian
method will be used throughout this thesis. We use the Hamiltonian method to
solve for the asymptotic solution. Before describing our method, I would like to

discuss the basic concepts as well as how this kind of problem is currently handled.

2.2 Landau Damping

Let’s take as an example the simplest form of Eq. (2.1)

2" + wex = Asin(wt + ¢y). (2.2)
It has analytic solution
xy .
T = Xycoswyl + — sinwyt
Wo
A ) . w :
+ —5——(sin(wt + @) — sin ¢y cos wot — — cos Py sin wyt), (2.3)

Wi — w wo
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with xy and z as initial values. For simplicity, let ¢9 = 7/2. For a large number
of particles with a normalized distribution p(wy), the displacement of the centroid is

given by

(x(t)) = /+00 dwy Ap(wo) [cos wt — cos wyt]. (2.4)

2 _ 2
o Wi — w

In order to drive the system, the driving frequency w must be close to wy. Expanding

Eq. (2.4) around wy and keeping the first order term, one obtains

A +oo 1 — cos(wp — w)t
(x(t)) = " [cos wt /_oo dwop(wo) wo(—ow )
+oo 3 _
+sin wt/ dwop(wo)w]. (2.5)
—c0 Wy — W

With the well-known mathematics trick,

1— —w)t 1 i —w)t
lim L= 080 — W)t _ and  lim S0 =9 s W), (26)
t—00 Wy — W Wy — W t—o0 Wy — W

where P stands for the principal value, one gets

(z(t)) = 2%;0 [coswt ’P/_:o dwy plwo) + mp(w) sinwt]. (2.7)

Wy — W

Therefore the displacement is distribution related. Only those particles with the
frequency wy ~ w can get energy from the driving force. Particles with wy far from
w will gain energy first, then give it back to the system. This is the basic physical

picture of Landau Damping. As we shall see later, Eq. (2.7) is not so accurate.

2.3 Vlasov Equation

Vlasov Equation can be derived from the continuity equation in phase space

P =
) 2.
at+V (pV) =0, (2.8)
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where V is the divergence in phase space and V is the velocity vector in phase space.

and V = (%, %) One can easily

In one dimensional phase space V = ( 0 &

oz’ 8:8)

verify V - V = 0 with Hamilton’s Equations, therefore in one dimensional phase space

Eq. (2.8) becomes

8p dz 8,0 n di 0p

o T dtor Taar =V (2.9)

Combining with the Hamilton’s Equations, one obtains

dp OHOp OHOp
o oror owas " (2.10)

It has a similar form in action-angle phase space

dp OHOp OH Op
ETRErY TSy Al (2.11)

Eq. (2.2) can be derived from the following action-angle phase space Hamiltonian

assuming perturbation force Ae=?! [3]

2J -
H = woJ + Ay — cos Pe™™", (2.12)
Wo

therefore

J = —A sm@e’“"t

o = wo—|——cos<1>e iwt

Let p(J, ®,t) = po(J) + p1(J, ®,t) = po(J) + g(J)e'(®=“!) substituting into Eq. (2.11)

and keeping only the first order term(assuming A and p; are small), one gets

8,01 8p1 2J . . t@po
IPL L e ZPh _ A2 sin@e it 2P0 — g 2.13
ot "% T Tt s T (2.13)

or

2J 1 —e %% 9p,
i ; SRy e ) 2.14
iwg(J) + iweg(J) — A o 5 57 0 ( )
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Averaging over ® yields

1 A 270
9(J) = SR

= —/— . 2.1
w—wp 2V wy 0J (2.15)

Therefore the distribution under perturbation becomes

1 A /2 .
p(J, @) = po() + —— 2 [2L 90 o) (2.16)

w—wo 2V w 8J

namely, the distribution function has a small fractional time dependent term. How-
ever, in most cases, especially in dipole mode perturbation, p; (or g(J)) is not small.
Therefore, this method has the limitation that it works only in some particular cases.
In the next section the Hamiltonian method will be discussed and our approach to

the particle distribution will also be introduced.

2.4 Our Solution

Equation (2.2) can be derived from the following Hamiltonian

1 1
H = ixa + §w§x2 — Az sin(wt + ép) (2.17)

With the generating function Fi(z, ¥) = —iwyz? tan ¥, i.e., letting

r = ,/HCOS\I!
wo

7 = —/2Jwysin ¥

Y

one obtains the new Hamiltonian in action angle phase space

A

[2J
H = wJ—-A w—cos\I!sin(wt—l-gﬁo)
0

A /2
= wyJ — 3 w—J[sin(\I/ + wt + ¢o) — sin(¥ — wt — ¢p)].
0

When w ~ wy, ignoring the fast oscillation term, one gets

-~ A /2
H =~ wyJ + 3 2J sin(¥ — wt — ¢p). (2.18)
Wo
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Note the fast oscillation term doesn’t affect the final equilibrium distribution. Fur-
thermore, the system can’t get energy from this term because it is incoherent. Es-
sentially this is due to Landau Damping.

With the generating function
Fy(U, 1) = (VU — wt — ¢o)1, (2.19)

the Hamiltonian is again transformed to the resonance rotating frame as

— A [21
H=06l+7/—sind, (2.20)
2 Wo

where § = wg — w. The fixed points are given by

I=——-=0, and &=— =0, (2.21)

or &pp = 7 and Ipp = %, which is the only fixed point and is stable.

Note the Hamiltonian in Eq. (2.20) is time-independent. It describes a harmonic

oscillator, which is obvious if we let

Y = ,/%Icosq)

P = —\2I5sin®

note the above relation can also be derived from the generating function
1
F(Y,®) = —§5Y2 tan ®. (2.22)

The Hamiltonian becomes

~ 1 1 A 1

H = —P? —(52Y2——’/—P
2 + 2 2 5(.()0
1 A 1 A? 1
~(P=Zy /) - ~§*Y2.
2( 2 66&)0) 85(4)0 + 2

Again using the generating function F3(P,®) = 55(P — 44/ 55-)” cot ®, one gets the

familiar form of the Hamiltonian

H=6I (2.23)
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Note the constant term has been thrown out. Although it has the same form as the
unperturbed Hamiltonian, however, this Hamiltonian is in the transferred resonance

rotating frame, therefore the physics is much different.

y -12 —1/2
X' o, Pd

A/(28w,")

~

@D xo, " (O

Figure 2.1: Left: Tori for Hamiltonian H = 12" + 1wiz?, right: Tori for 1z +

swiz? + Azsinwt in the resonance rotating frame.

Fig. 2.1 shows the tori for the original and the perturbed Hamiltonian. The effect
of the perturbation is giving the center of mass a displacement in phase space, in
the mean time rotating the centroid of the system at angular speed of w, the driving
frequency. This is the physical picture of dipole mode oscillation.

If we assume the system has very narrow frequency spread, i.e., p(w) = §(w — wy),

then the displacement of the center of mass is

(z(t))

= %o sin(wt + ¢p). (2.24)

One can compare Eq. (2.7) with Eq. (2.24). Remember both results have included

Landau Damping.
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Note in Fig. 2.1 all the tori are circles. Therefore, if the phase space is preserved
during the turning-on of the driving force, the beam distribution around the centroid
should be the same. This is true only for the dipole mode oscillation. For the other
modes, we have to go back to the Vlasov Equation.

In the resonance rotating frame, the Hamiltonian is time-independent, therefore
we expect the equilibrium particle distribution to be independent of time. The Vlasov

Equation becomes

OH 0p OH dp
aPay avop -V (2.25)

where (Y, P) are phase space coordinates as defined in Eq. (2.22). Eq. (2.25) means
the distribution function doesn’t change along the torus of the Hamiltonian, or, the
distribution is a function of H, the Hamiltonian. The particular form of the solution is
determined by the initial condition. Note Boltzmann distribution p = N ef’“BLT auto-
matically satisfies Eq. 2.25, where N is the normalization factor, H is the Hamiltonian,
kp is Boltzmann constant and T is the temperature. For linear cases, kgT = Qe,
where () is the tune of the Hamiltonian and ¢ is the emittance of the initial system.
In order for the system to satisfy the Boltzmann distribution, the initial distribution
before the turning-on of the driving force must be Gaussian. Actually Gaussian distri-
bution is another form of Boltzmann distribution in our linear system. If we substitute
the initial Hamiltonian H = vJ into Boltzmann distribution, we get p(J) = ﬁe” o,
which is the Gaussian distribution. Fortunately for many systems the initial states are
in Gaussian distribution, therefore Boltzmann distribution in the resonance rotating
frame has general significance.

Back to our problem. If the initial distribution is Gaussian, then the distribution

function for the Hamiltonian (2.23) is

(= et = % (2.26)
— € — €0 .
P 271'606 2me c
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which is the same as the initial distribution except this is in the transferred resonance
rotating frame. The distribution in the lab frame can be found by rotation and
transformation. Note in the lab frame the distribution is a function of time due to
the rotation. Therefore all the problems are solved and this is our method. In this
dissertation we are going to solve Eq. (2.1) with quadrupole mode perturbation, and

discuss the applications.
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Chapter 3

Quadrupole Mode Perturbation to

the Transverse Motion

3.1 Introduction

One similar structure to rf quadrupole is the RFQ (Radio Frequency Quadrupole)
accelerator. The idea was put forward by I.M.Kapchinskij and V.A.Teplyahov [4] in
1970. They created a novel linac structure which can both accelerate and focus low
energy beam with an alternating electromagnetic field. However, what we will study
is a quadrupole magnet with radio frequency power supply. It is used for focusing or
defocusing of high energy beam in storage rings. If the quadrupole strength for such
a quadrupole is K, = By/Bp, where B; = 0B;/0z, and Bp is the magnetic rigidity

of the particle, then the equation of motion in the rf quadrupole is
y" + Kypcoswp st y =0, (3.1)

where w, is the working frequency of the rf quadrupole and the double prime means

the second derivative with respect to the path length s = vot. Therefore the focusing
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or defocusing force varies periodically with time. In storage rings, this means the
phase advance contributed by the rf quadrupole changes periodically.

At first physicists realized that the tune spread for individual bunches brought by
rf quadrupole could be used to suppress the coupled bunch instability [5]. In 1991
an ‘RFQM’ was built and installed in the 2.5 GeV positron storage ring, the Photon
Factory at KEK, Japan [6]. In order to have the idea of their implementation, the
parameters of this RFQ Magnet is listed in Table 3.1. It has a one turn coil and

Table 3.1: Parameters of RFQM at KEK

Maximum field gradient(peak value) 0.0173 T/m
Maximum peak current 43 A
Excitation frequency 1.6029MHZ
Bore diameter 120 mm
Core Length 0.34 m
Effective magnetic length 0.38 m

Self inductance 2.1 H
Maximum output power of RF amplifier 2 kW

Maximum horizontal tune shift (peak value) 1.23x1073

Maximum vertical tune shift (peak value) 6.8x10~*

a ferrite yoke. The RFQM works at revolution frequency and the measured tune
change for different bunch is a sinusoidal curve along the longitudinal path, which is
as expected. Then they tuned one cavity to generate a higher-order-mode (HOM)
frequency f = (n—v,)fo, where n is an integer, v, is the horizontal tune and f is the
revolution frequency. When this HOM existed, the threshold current dropped from
28mA to 9mA, however, if the RFQM was turned on and the tune spread of 2.5 x 10~*



3.2 Resonance Strength of RF Quadrupoles 21

was introduced into different bunches then the threshold current stayed almost the
same! The experimental results indicated that the RFQM was effective in suppressing
the instability caused by the HOM oscillation. Unfortunately the RFQM almost had
no effect on the vertical intensity related instability in their positron ring, which
was their initial motive. Until recently there was still interesting discussion about
increasing the transverse mode coupling instability threshold by an RF quadrupole
[7].

Another RF quadrupole was later built at HIMAC, Japan [8]. In the beginning
they wanted to use it for slow extraction. Similar to the third harmonic resonance
slow extraction, the rf quadrupole was intended to be a second harmonic driving
device. The particles were expected to move away from the center slowly under the
driving force of the rf quadrupole. In 2002 it was reported that the RF quadrupole
was used in their space-charge experiment [9].

During all those explorations there is an unsolved mathematical difficulty, i.e., the
Mathieu instability. As we discussed in Chapter two, one way to solve this problem
is to use the Hamiltonian method. In this chapter we will give an analytic solution
to this problem, discuss the properties of the final Hamiltonian and verify it with

particle simulation.

3.2 Resonance Strength of RF Quadrupoles

The transverse equation of motion in storage rings in the presence of rf quadrupoles

is given by

Bl(S)
"y K (s)y = =L 2
y"' 4+ K(s)y 2B, y cos(wmt + X), (3.2)

where s is the longitudinal coordinate along the accelerator, By (s) is the rf quadrupole

field strength, w,, is the modulation angular frequency, and x is the phase of the rf
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quadrupole.
We consider N rf quadrupoles distributed in a storage ring. Note each time the
particle passes through the rf quadrupole, it experiences a different quadrupole field

strength. Therefore the Hamiltonian for particle motion is

o0

1 By ( sZ
H(y,y) = 59° + 3 K s)y +Z Y =2 6(s — si — nC)y? cos(wmt + Xi)-

=1 n=—00

Transforming to the action-angle coordinates with the generating function

2 !

it ) = = 35 (tan g, = )

one obtains
2 Bi(s)iBy(55) inies
H(Jy, ¢y) = vydy+Jy E E ! 27rB/;y )6‘7( /R

=1 n=—o00

x cos?(py + py(si) — l/y%) cos(Wmt + Xi), (3.3)

where (Jy, ¢,) are conjugate action-angle coordinates, R is the average radius of the
accelerator, v, is the tune of the betatron motion, and the following identity has been

used
g — n(s—si)/R
n;oo d(s—s; —nC) = - n;oo e’ . (3.4)
Expanding the Hamiltonian in revolution harmonics, one gets

H(Jy,qﬁy) = vy + Z {An . 6](2¢y+n0+wmt)+A ~ eJ ~2py+nf—wmt) |

n=-—oo

Ap o _ei@oytnd—umt) 4 g +ej(—2¢y+n0+wmt)} +h(J,,t), (3.5)

where § = s/R is the orbiting angle around the accelerator, and h(Jy, t) depends only

on the time ¢ and Jy, which is a fast oscillating term. This term can be ignored since
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it doesn’t affect the beam distribution, and

An,:l:,:t = E ﬁzBl SZ i *Jnsl/R:l:j(Zuy(sz) 2uysi/REx;)

~ 8rBp p

_ ]( B($)BL(S) - jns/ Rt 2uy () -2w 5/ Rebx(s)) (3.6)
87TB p

Note that d¢,/df = v,. When the modulation tune vy, = wm/wp is near a half integer
betatron sideband, e.g. vm ~ 21, — n, the stationary phase term in the Hamiltonian

dominates the dynamics, and the Hamiltonian can be approximated by
H(Jy, ¢y) = vy, + C1Jycos(2¢, —nb — wmt + X), (3.7)

where we identify the Fourier amplitude as A,_ ;. = Cie7x. Here we define C

positive.

3.3 The Properties of the Hamiltonian

3.3.1 Linear Mathieu Instability

We transform the Hamiltonian (3.7) into a resonance rotating frame by using the

generating function Fy = (¢, — %n@ — %l/mH + x)J to obtain a new Hamiltonian:
H(¢,I) =01 + Ci1I cos 21, (3.8)

where I = J, ¥ = ¢, — nf — 11,0 + X, and 6 = |y, — in| — iu, is called the
resonance prorimity parameter. Since the Hamiltonian (3.8) is time () independent,
the Hamiltonian is a constant of motion. It is equivalent to take the Poincaré surface
of section at every 1/vy, turns.

In the region of —C; < § < 4+C', the beam encounters the linear Mathieu insta-
bility driven by the rf quadrupole. The Hamiltonian (3.8) is stable when |0| > Cj.
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Introducing the normalized coordinates: Y = /2 cosy and P = —+/2[sin, the

Hamiltonian is transformed to
1 o 1 2
H = 5((5+C1)Y +§(5—C’1)P . (3.9)

A torus associated with a constant Hamiltonian value is elliptical, and the stable

fixed point is located at the origin with Iy, = 0, or X = Py, = 0. The aspect ratio

of the ellipse is /|(6 + C1)/(6 — C1)|. Adjusting the § or C; parameters, one can
adjust the shape of the admittance ellipse, and thus the rf quadrupole can be used to
compensate injection mismatch.

Fig. 3.1 shows the trace of one single particle in the resonance rotating frame.
Basically the particle just follows the torus of the Hamiltonian, however, note the

small oscillation due to the incoherent terms in Eq. (3.5).

3.3.2 Nonlinear Mathieu instability

When a detuning term is included, e.g. in the presence of octupole magnets, the

Hamiltonian becomes
1 2
H =6+ CyIcos2y + iany : (3.10)

where we neglect effects of higher order nonlinear resonances. The nonlinear detuning
parameter oy, may arise from the space charge force, the concatenating effects of
sextupoles, and other higher order multi-poles. For example, the detuning parameter

due to an octupole is ayy = 14— § %5; Bids, where By = 0°B,/0x* is the octupole field

strength.

Actually the vector potential due to an octupole is A, = 22 (2 — 62%2?), this adds

into the Hamiltonain an additional term g—;%(fl — 62%2?). Note the R factor is from
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—0.002 ‘ ‘
—0. 001 0 0.001

Y

Figure 3.1: The trace of one single particle in the resonance rotating frame for the

linear Hamiltonian. Parameters used are § = 0.0013, C; = 0.001.

the change of time from 6 to s. Averaging over one turn, one gets

R Bs A 2.2
o d024Bp( 6x°2°)

- —?{ 1B3ﬂ2J2COS Y(s)

B 133 03 1 1

= o 6B —p J( 200821/1(8)+ 8(:0841/1(3))

_ 1 Bs 11
2 167 Bpﬂyds / (3:11)

In the derivation, the 2222 term is dropped because it does’t attribute to the J? term.

And the integral of any cos terms is zero on average.



26 3. Quadrupole Mode Perturbation to the Transverse Motion
50 0.004
=~ 40 ] o
g f 0.002 - ¢ 1
— 30 L ] —~ L/
= g q L
| 20 17 0l 8
E [ é : ‘\‘Q\
SO oo
~ 0 7 - ‘ ] ' :
A0 B ~0.004 Lo
-0.6 -0.2 0.2 0.6 -0.006 -0.002 1/(2).002 0.006
A (mm) Y(m™)
0004 ———7+— 0.002
2 -
0.001 - 8
9 l
e 0 ]
o I
-0.001 - 8
-0.004 L b 002 b
-0.004 0.004 -0.002-0.001 01/2 0.001 0.002

Y(m'")

Figure 3.2: Top left: Stable (solid line) and unstable (short dashed line) fixed points

vs the effective resonance proximity parameter A = 6/a,, for the ef-

fective resonance strength parameter ¢; = Ci/ay, = 0.10 mm. The

plots labeled (1), (2), and (3) correspond to the vertical long-dashed

lines marked as (1), (2), and (3) respectively. The Hamiltonian is
H = Al —c;Icos2y + %12 with Y = +v/2Icos® and P = —+/21 sin 1.
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Fixed points can be obtained from Hamilton’s equations: I =0and w = 0, where
the over-dot represents the time(#) derivative. The property of the Hamiltonian (3.10)
depends on the signs of § and ay,. For example, if ay, < 0 and C; > 0, the stable

fixed points are given by

—Lo+o) if §>-C

Isip = (3.12)
0 if 5>Cl and(5<—Cl
with g, = 0 and 7. The Hamiltonian value of the fixed point is Hgg, = —%ayylffp.
The corresponding unstable fixed points are located at
—L@E-0) if §>C
Ly = a0 =) ' (3.13)

0 if —Ci<d<C;

with ¢y = 7/2 and 37/2. The Hamiltonian value of the separatrix torus is Hygp =

—%ayylgfp. The minimum action of the separatrix orbit is Is min = (v —0— VC1)? /.

The top left plot of Fig. 3.2 shows the action of the fixed points vs the parameter
d/cy, for a parameter Ci/ay, = 0.10 mm. Note that region (1) is below the bifur-
cation threshold and the phase-space is bifurcated into 2 islands in region (2) and is
triplicated into 3 islands in region (3).

Fig. 3.3 shows the traces of a single particle in three different frequency regions
in the resonance rotating phase space. Again one can see that the particle follows
the Hamiltonian torus with a very small oscillation due to those dropped terms in

Eq. (3.5).

3.3.3 The value of the nonlinear Hamiltonian

For the nonlinear Hamiltonian H = 01 + CiIcos2y + %ayyﬂ, the orientation is
different between different signs of o, as is reflected in the fixed points. The example

of region 3 is shown in Fig. 3.4. Note the signs of ¢ are also changed correspondingly.
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Figure 3.3: The traces of one single particle in 3 frequency regions in the resonance
rotating frame. Parameters used are Left: 6 = 0, C; = 0.001, oy, =
—500, Center: § = —0.002, C; = 0.001, «, = —500, and Right:
0 =0.0013, C; = 0.001, oy, = —1000.

Remember this is in the resonance rotating frame, the torus rotates if observed in
the lab frame, therefore the different orientation doesn’t change the physics except a
phase difference. This phase difference will be taken into account in the mismatch

application.

Since the other properties are the same for both cases, in the rest of this section we
shall take a, < 0 as an example. The Hamiltonian value plotted as function of J in

horizontal and vertical directions are plotted in Fig. 3.5. In the horizontal direction,
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Figure 3.4: The orientation of the torus. The parameters used are Left: oy, =
—200, 6 = 0.001,C; = 0.0005, Right: ay, = 200, 6 = —0.001,C; =
0.0005.

the origin and the maximum points correspond to the stable fixed points, however, in
the vertical direction, the maximum points represent the unstable fixed points. The
Hamiltonian value in the region 2 is plotted in Fig. 3.6. In this region, there are no
fixed points in the vertical direction, therefore the value of the Hamiltonian increases

or decreases monotonically in either side.

3.4 Hamiltonian Properties in Region 1

In this region the torus has the simplest form. The deformed torus is still alike to the
original linear elliptical torus. However, we want to understand the beam properties
in this region in detail because the emittance measurement will be applied in this

region. It is also the basis to understand the properties in the other two regions.
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Figure 3.5: The Hamiltonian value as function of J for the left plot of Fig. 3.4. The
parameters used are oy, = —200, 6 = 0.001,C; = 0.0005. Left plot is

for the vertical direction and right plot is for the horizontal direction.

We again take 6 < —C; and o, < 0 as an example. For a given Hamiltonian, the

action is given by
1

J=— [ — (0 + Cycos29) — \/((5 + C cos 29))? + 2ayyH] . (3.14)

CQryy

Note the Hamiltonian is always less than zero.

The area enclosed by the torus can be calculated as

A(H) = f Jdip

2m
= 7{ dz/;i [ — (6 + Cy cos 2¢) — \/((5 + C cos 2¢0)? + 2y, H | (3.15)
0 a

vy

In the left frame of Fig. 3.7 the area is plotted against the Hamiltonian. Since the
area in phase space represents energy, one would expect a linear relation between
area and the corresponding Hamiltonian. However, the calculation result shows the

relation is not simply linear.
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Figure 3.6: The Hamiltonian value as function of J in the region 2. The parameters
used are oy, = —200, 6 = —0.001,C; = 0.002. Left plot is for the

vertical direction and right plot is for the horizontal direction.

Although the torus is not elliptical, we can still define the aspect ratio as

Voo A0+ G+ O OO 20y, H

R(H) = = . (3.16)
V2 p=r /2 \/5 — O+ /(6= C1) + 20y, H
According to the Hamilton’s equations, we know
. 1 ;
=0+ Cicos2¢ + iany = —\/(5 + C cos29)? + 20y, H. (3.17)

The minus sign means the particle moves clockwise in (J, %) phase space. And the
period is given by

B @ B 2 dw

T{H) = Wl Jo /(0 + Crcos20)? + 20, H

(3.18)

Therefore one can calculate the tune by Q(H) = 27/T(H). The tune versus the
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Figure 3.7: Left: the area enclosed by the torus of the Hamiltonian H. Right: the
tune of the Hamiltonian. Note the tune at J = 0 goes back to /62 — C%.
Parameters used are oy, = —200, 6 = —0.002, C; = 0.001.

Hamiltonian is also plotted in Fig. 3.7. Note if o = 0, we have

27
T(Hiinear) = ]g v =i (3.19)

|0 + C cos 29| - V62— C%’

which agrees with the result of the linear Hamiltonian.

3.5 Beam-splitting in Region 2

Below the bifurcation threshold the emittance is fully preserved when we adiabatically

change the parameters of the rf quadrupole. What happens at the bifurcation point?

Particle simulation was done to study the beam properties at the bifurcation point.
As is shown in Fig. 3.9, the beam manipulation procedure goes as follows in the

particle simulation. The rf quadrupole is initially adiabatically turned on to a preset
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Figure 3.8: The evolution of bunch distribution as the rf quadrupole parameters
are adiabatically changed. The beam splits into two beam-lets, and
restore back to one. The normalized phase-space in this plot is defined as
7 = /21 cos Y and Py = —v/2I sin 1. Parameters used in the numerical
simulations at the bottom-left plot are § = —0.006256, C; = 0.01, and
@y = —200 m!. The times corresponding to these Poincareé surfaces

of section are marked in Fig. 3.9.

value in a single fixed point region with |§| > |C4]|, then the modulation tune vy,
is adiabatically changed to the condition [0| < |C}|, where the stable fixed point is
bifurcated into two stable fixed points. In this region, the unstable fixed point is

located at I, = 0.

If the parameters of the rf quadrupole are changed adiabatically, particles are

supposed to follow the Hamiltonian tori. Fig. 3.8 shows particles move into nonlinear
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Figure 3.9: . The dashed and solid lines are the resonance proximity 6 parameter
and the rf quadrupole strength C; as functions of time (in revolution
turns). The Poincareé surfaces of section plotted in Figs. 3.8 and 3.10

are marked as diamond symbols. The corresponding turn-numbers are:

0, 1600, 1800, 4000, 4540, and 8000.

Mathieu islands, where the times for the Poincareé surface of section (snapshot in
the phase-space) are marked as diamond symbols in Fig. 3.9 with the corresponding
machine parameters used in the multi-particle simulation.

The snapshots of the Poincareé surfaces-of-section are taken in the time-sequence
from the top-left plot in the first row to the bottom-right plot of the second row. It
seems that there is little emittance increase if the procedure is carried out properly.

However, if we inspect the physics more closely, the procedure is intrinsically non-
adiabatic, and emittance increase is un-avoidable. Figure 3.10 shows the evolution

of the lo-ellipse of the corresponding multi-particle simulation shown in Fig. 3.8 at
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Figure 3.10: The evolution of the 1o ellipse in the beam manipulation where the
beam is moved adiabatically through the Mathieu bifurcation point
and back. Parameters used in this simulation at the bottom-left plot

are 0 = —0.006256, C; = 0.01, and a,, = —200. m™"

the exact times as shown in Fig. 3.9. As the phase-space is divided into two islands,
the 1o ellipse is wound into two islands. When the procedure is reversed, these two
disjoint ellipses can not be restored into the original one, and the emittance can not be
preserved during this process. In most applications, the increase of beam emittance
is however reasonably small. The left plot of Fig. 3.11 shows the rms emittance
increment ratio for oy, = —400 m* (A), —600 m* ({), and —1000 m~* (O) as a
function of the Iy, by changing the ¢ parameter at a constant C; = 0.0004.

Note that the emittance growth does not depend much on the o, parameter,

but is a sensitive function of Iy,. The emittance growth would be much larger if
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Figure 3.11: Left: Emittance increment ratio €¢/¢; after moving the beam to Iy
and back for different c,,. Parameters used in this calculation are
C; = 0.004 with oy, = —400 m™" (A) —600 m~"' ($), and —1000.
m~! (O) respectively. Right: Emittance increment ratio after moving
the beam to Iy, and back for different parameter C;. Here, we use
Qyy = —1000 m™*, with C; = 0.006 (A), 0.004 (), and 0.002 (O)

respectively.

the Iy, goes beyond the second bifurcation region. The right plot of Fig. 3.11 shows
the emittance growth factor as a function of Iy, for a given «,, with different C;
parameter. For a smaller C'; parameter, one has to set the § parameter near the
bifurcation of 3-island region to get the desired action Ig;,. The resulting emittance
dilution becomes very large, because some particles are squeezed out of a bucket
into another bucket. The adiabatically condition is not fulfilled, and the emittance

dilution is inevitable.
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3.6 Boltzmann Distribution in beam

3.6.1 Beam Distribution of the Ring Hamiltonian

As was discussed in Chapter Two, if a system is governed by a time-independent
Hamiltonian, according to the Vlasov Equation, the equilibrium particle distribution
must be a function of the Hamiltonian. The Boltzmann distribution is one of such
distributions. In this section, we are going to discuss the conditions which lead to the
Boltzmann distribution and deduce the explicit forms of the Boltzmann distribution
for different Hamiltonians.

The Boltzmann distribution is given by

H)= ~¢ 3.20
p(H) = v F, (3:20)
where N is the normalization factor and Fj is the thermal energy of the beam governed

by the Hamiltonian H. Consider a beam with Gaussian distribution, namely,

1 &

pe(dyty) = 5——€ 7% (3.21)

27€g

where ¢q is the rms emittance of the beam. The ring Hamiltonian in normalized phase

space is given by

H=u,J, (3.22)
Comparing Eq. (3.20) with Eq. (3.21) and Eq. (3.22), one obtains

E; = Qe, (3.23)

and

pp(H) = e %o, (3.24)
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where (2 is the tune of the Hamiltonian. Area in phase space represents ‘energy’,
and this ’energy’ is perserved in adiabatic beam manipulations. Therefore essentially
the area of the torus of the Hamiltonian should be used as the distribution invariant.
Notice % represents area in (H,t) phase space in case of the linear Hamiltonian. As

we shall see later, Eq. (3.24) is only an approximation for the nonlinear Hamiltonian.

3.6.2 Beam Distribution for the Nonlinear Ring Hamiltonian

When a nonlinear detuning term is included, the Hamiltonian becomes H (%, J,) =
vydy + %anyj, and the Boltzmann distribution becomes

vy J+¥ayy T2

pe(Jy,thy) = Ne 5, (3.25)

where we assume oy, > 0. The normalization constant A and the thermal energy

are determined by the conditions:

foood‘]f dypp(Jy,ty) = 1

, (3.26)
JENUBH - (VR =
where the average of a function f is defined by
o] 2m
= [ s, [ v tona). (3.27)
0 0

Note the first equation of Eq. (3.26) is the normalization equation of the distribution
function, and the second equation is just the definition of the emittance.

From these conditions, we find

erfer(u)
Ee= e 2u2(1 — erfer(u)) (3:28)
N = 1 2u*(1 — erfer(u)) (3.29)

2mey  (erfer(u))?
where the reduced complementary error-function is

3 P 1 13 1-3-5
erfer(u) = /mue* erfc(u) =1 — 5 + i) T @y +... (3.30)
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with the complementary error-function defined as erfc(u) = % [ e ¥’ dy, and the
parameter u is given by u = v,/ \/m. Since the parameter u depends on Fi,
the thermal energy should be solved self-consistently from Eq. (3.28). In practice
v, is much larger than /2E€y, we find F; &~ vyep and N = 1/(2mep). This is the
unperturbed Gaussian distribution shown in Eq. (3.21), i.e. the nonlinear detuning
does not substantially change the beam distribution.

In the case of o, < 0, the Boltzmann distribution for the Hamiltonian H (¢, J,) =
vyJy + 3oy J7 still has the similar form. However, the distribution function has
a minimum at Jy,, = —v,/0y,. Beyond this point, the value of the distribution
function starts to increase. In fact that point is a fixed point of the Hamiltonian.
However the Hamiltonian is not applicable when the action J, is very large. More
higher order terms must be considered to study the beam dynamics at that point.
Note in practice J is usually less than 10™*m - rad, and Jy,, is of order of 10% to 10°

m - rad.

3.6.3 Beam Distribution for the Linear Perturbed Hamilto-
nian

For the Hamilton H(Jy, ¥,) = 0J,+C4J, cos 21, the tune can be calculated explicitly,

hence the Boltzmann distribution is given by

- 5Jy+ClJy cos 29y

1 [s2_o2
pB(Jy, ty) = s—e R (3.31)

27

Integrating over v, one obtains the distribution along the action J

1 20 _6Jy+ClJy cos2¢y 1 C J _ 6Jy
pB(Jy) = o— dpe V7 AY = —[p(——)e VA0, (332)

2716 J, € /02— C?e
where I is the zeroth order of the modified Bessel function of the first kind. Therefore

one would expect a longer tail due to the Bessel function. Using the normalized
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Figure 3.12: The beam distribution of the linear Hamiltonian. The circles are ob-

tained from particle simulation, and the solid line is given by Eq. (3.32).

The dotted line of Gaussian distribution is also plotted for comparison.

The Gaussian distribution is given by p(J) = le 7/, Parameters used

are € = 1 x 107™%m - rad, § = 0.0013, C; = 0.001. There are 10,000

particles in the simulation and the sampling width is 1.132 x 1077,

coordinates Y = /2J, cos 9, P, = —/2J, sin%, the distribution function becomes

_ ($+cy)Y?

2
_ (6-Cp)P]

1 2 2
pp(Y, P,) = ——e V¥ oe /i, (3.33)

2meg

which is a bi-Gaussian.

Fig. 3.12 shows the particle distribution as function of the action J. Fig. 3.13
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Figure 3.13:

The particle distribution along Y or P, in the same particle simulation
as of Fig. 3.12. The circles are obtained from simulation and the solid
line is Gaussian distribution given by p(z) = 1/v/2n0,e~*"/2%  In the
e=36x107, 02 = \/%e — 2.8 x 1076,
where € = 1 x 10~%m-rad is the initial emittance. Other parameters

0.001 and N = 10,000,dy = 1.9 x 107>, dp =

—C1
+Cq

simulation, o] =

are 6 = 0.0013, C;
5.3 x 1075.

shows the particle distribution along Y or P, direction. From the above figures, one

can see that the particle distribution obtained from particle simulation agrees very

well with the Boltzmann distribution.

3.6.4 Beam Distribution for the Nonlinear Perturbed Hamil-

tonian

For the nonlinear Hamiltonian H(J,,,) = 6J, + J,C1 cos 2y, + %anyj, the tune

is not a constant, consequently the distribution is much more complicated. Here
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we are concerned only with the distribution in region 1. According to our previous
discussion, the phase space area is preserved during the beam manipulation, therefore

the distribution should have the following form

]_ rea
p(H) = Ne_—A e (3.34)

Unfortunately, we find in Fig. 3.7 that the relation between the Area and the value
of the Hamiltonian is not linear. Therefore in this case the Boltzmann distribution is
only a first order approximation.

If we write the Boltzmann distribution as

1 2
1 _6Jy+ClJy 0052¢y+§anyy

= N@ Ey s (335)

pB(Jy; y)

then normalization factor N and the thermal energy E; can again be solved from
Eq. (3.26). Detailed discussion of solving these equations can be found in Appendix
B.

In practice, however, one can use a bi-Gaussian distribution function similar to

that of the linear Hamiltonian as following

vt o
p(Y,P,) = e e Fy (3.36)

271

with
2 _  JecC
T VTG (3.37)
[sc+C ’ '
O-%y - (setci 60
and the effective proximity parameter J, is given by

de = 0 + Foyyeg, (3.38)

and the factor F' =~ 2.5 £ 0.2 is obtained from particle simulation. Note § always has

the same sign as ay, in region 1.
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Fig. 3.14 shows the beam distribution results obtained from particle simulation.
The particle distribution in (Y, P,) phase space is well approximated by a bi-Gaussian
distribution in very large ranges of the parameters, except that the real distribution
seems to have a broader or sharper top. One can understand this by comparing the
torus of the Hamiltonian with an ellipse. The torus looks like a swelled ellipse which
causes the difference of the distribution.

The beam distribution along J is more complicated. When the detuning parameter
oy 1s small, the distribution looks like the distribution of the linear Hamiltonian.
One can compare the top-left plot in Fig. 3.15 with Fig. 3.12. While ¢, is large,
the distribution tends to a Gaussian distribution! The corresponding distribution in
(Y, P,) phase space is shown in Fig. 3.16. Note the distribution is still bi-Gaussian,
even for a huge o, parameter. Although one can understand the detuning term
%ayyﬂ suppresses the long tail, the agreement with Gaussian in the lower-right plot

of Fig. 3.15 is still a surprise.
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Figure 3.14:

The beam distribution against Y or P, for the nonlinear Hamiltonian
in the resonance rotating frame. The circles are obtained from particle

simulation, and the solid line is Gaussian distribution given by p(x) =

1 6—12/203c )
2moy

e=1x10"%m - rad.

oy or op, is given by Eq. (3.37). In the simulation
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Figure 3.15: The beam distribution against action J, for the nonlinear Hamiltonian.
The circles are obtained from particle simulation, and the solid line is
Gaussian distribution given by p(J) = le7//c. qy, is written in the
plots, the other parameters are e = 1 x 10 m-rad, § = —0.0013, C;, =
0.001. There are 10,000 particles in the simulation and the widths of

the sampling slot are around 6 x 1078.
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Figure 3.16: The beam distribution against Y or P, for the nonlinear Hamiltonian

in the resonance rotating frame. The circles are obtained from particle
simulation, and the solid line is Gaussian distribution given by p(x) =
ﬁ%e"ﬂ/%%. oy or op, is given by Eq. (3.37). ay, is written in the
plots, the other parameters are e = 1 x 10 %m-rad, § = —0.0013, C, =

0.001.
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Chapter 4

Applications of RF Quadrupole

4.1 Emittance Measurement

Using a Beam Position Monitor(BPM) to measure beam moments dates back to the
1960’s [10]. However, the method was not widely used until R. H. Miller presented it at
the 12th International Conference on High- Energy Accelerators in 1983 [11] although
he actually was not aware of Gol'din ’s paper [12]. Recently several laboratories have
applied this method to their machines.

As is pointed out by Miller, four devices can be used to measure the quadrupole

moment including
1. a strip line position monitor,

2. a cylindrical microwave cavity resonant in the TMjy; o mode at the rf frequency

of the beam,

3. a resistively loaded insulated gap in the beam pipe with voltage monitors at

four points around the gap, and

4. four magnetic pickup loops located at 90° intervals around the beam pipe.
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All of these devices depend on the beam having a short time structure. Each devices
measures the cos 26 component of the image currents. For a long beam pulse the
TMs,1,0 microwave cavity is probably the most sensitive transducer, while for the

very short pulses the strip-line position monitors are ideal.

The principle of BPM can be found in appendix B. For a linear accelerator or
beam transport line the emittance measurement with BPM is straightforward. This
is because the beam width can be changed by the quadrupoles upstream of the BPM.
One can even calibrate the BPM with a dipole kick to the beam [13]. Because this
method doesn’t require prior knowledge of the beam distribution, it can be applied
to non-Gaussian beam, e.g., a sub-picosecond beam from photo-injector [14]. Later
interests were turned to mismatch correction with BPM in the ring accelerator [15].
The idea is to minimize the quadrupole mode oscillation to obtain the best match.
Emittance measurement in storage rings with BPM has not been fully successful
because the rms signal derived from a BPM is weak and the rms beam-width can not

easily be modified by a quadrupole [16].

As we described in Chapter Three, the rf quadrupole modulates the beam width.
Therefore we can get an AC quadratic signal from BPM, and the amplitude can
be precisely obtained by Fourier transformation. Furthermore, the amplitude of the
oscillation is controlled by rf quadrupole. Consequently the emittance can be derived

from the fitting between rf quadrupole parameters and the BPM signal.

4.1.1 Quadrupole Mode Transfer Function

The induced surface charge density on a conducting cylinder by an infinitely long line
charge is

A a? — r?

o(r,¢,0,0) = 2ma a? + 1?2 — 2ar cos(© — @)’

(4.1)
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where A\ = Nge/(v/270,) is the line charge density, e is the charge of the orbiting
particle, N is the number of particles in a bunch, o is the rms bunch length, (r, ¢) is
the location of the line charge in cylindrical coordinate system, (a, ©) is the position
on the conducting cylinder with radius a. Usually the radius r of the charge particle
is much smaller than the BPM chamber radius a. Hence one can expand the charge

density in power series of r/a

o(r,¢,a,0)

= 27ra[1+22 ¥ cosk(© — )]

= 2—{1 + 2[— cos O + —sin@]

x2_ 2

+2[

cos 20 + 2— sin 20)]

+higher order terms}, (4.2)

where £ = r cos ¢, z = rsin ¢ are the coordinates for the line charge.
Now consider a beam with normalized distribution function p(z,z’, z, 2), where
(x,2") and (z, 2") are the transverse phase-space coordinates of betatron motion, then

the total charge density on the BPM is given by
o(a,®) = /dxdm'dzdz'a(r, b,a,0)p(z,2',2,2")

= i{1 +2[@ cos © + %sin@]

<>—<>

+2[———"c0s20 + 25130_50 sin 20
a

~+higher order terms}, (4.3)

where 2y = [ dzdz'dzdz' z p(z, 7', 2,2"), 20 = [ dxdr'dzdz’ z p(z, o', 2, 2') are the co-
ordinates of the beam centroid.
When the rf quadrupole is turned on, the deformed tori of the Hamiltonian rotate

in normalized phase space at a tune of %l/m. Therefore the beam distribution changes
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with time according to

p(J, (1) = p(J, ¥ + %vmwot), (4.4)

where wy is the particle revolution angular frequency.
If we set the modulation frequency v,, ~ 2v,, and make it work in the one stable
fixed point side, i.e., region 1 in the plot of Fig. 3.2, then the rf quadrupole affects
the horizontal phase space only. This is because usually v, and v, are apart by at
least 107!, and the effective range of rf quadrupole is 2(v,or, + 1072), therefore rf
quadrupole only perturbs one plane.

Considering the integral [ dzdz’ 22 p(z, z') in normalized phase space, where z, =

T — T, one gets
/ deda'z2p(z, 7')
- / dJdip ()28, cos? () p(J, (1))
= [ drdule) 26,7 cos? (0) p(T, 0+ Gt
- / dJdip 2B,J cos® (1 — %ymwot) p(J, ). (4.5)

Note although dzdz' = B,dJdy, p(z,z')dzdx’ = p(J,1)dJdyp, namely, the possibil-
ity of the particle staying in the same phase space range must be the same. Now

integrating in the resonance rotating frame,

/ dzdz'z2p(z, 2')
= [ ardu(e) 26.7 502, 6(0)
1 1
x (cos? 1) (t) cos® §z/mw0t + sin? 1 (t) sin” iymwot + cos 1(t) sin 9 (1) sin vy,wot)
2y ol o o2 L .
= [x(X7)cos §l/mw0t + Bz(P;) sin §I/mw0t — B{X Py) sin vywot

= Sa(X%) + (P2) + 5B.(X?) — (P2)) cosvimst, (4.6
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where X = v/2Jcosy, P, = —V/2Jsiney are the normalized coordinates, (X?) =
[ X?p(J,¢)dJdyp. Here p(J,1) is the Boltzmann distribution as we described in
Chapter Three. The (XP,) term is dropped due to the symmetry of Boltzmann

distribution.

When the frequency of the rf quadrupole is close to 2v,, the quadratic signal
picked up by the BPM is given by

o - o(a,0)+o(a,7) —o(a,§) — o(a, 377’)
2 o(a,0)+o(a,7)+o(a,§) +o(a, 37”)
= [ = )+ 5B + (P
+%B$((X2) — (P2)) cos vmwot]
= %(bo + by oS Vywot), (4.7)
where
b = 2(xg— 2 — (7)) + Bo(X?) + Bo(P2) (4.8)
b = B.((X?) —(P2)), (4.9)

and \/@ is the unperturbed half beam width in z direction. Although the DC
component by of the quadrupole moments ¢, is much larger than the modulation b,
the coefficient b; can, however, be accurately determined by a Fourier transformation
of the quadrupole pickup signal. Here the coefficient b, is called the quadrupole-mode
transfer function now that the amplitude of b; changes with the working frequency

of the rf quadrupole.
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4.1.2 Linear Hamiltonian

Now let’s calculate(X?) and (P?) in the resonance rotating frame. First consider the

linear case, i.e., az, = 0. The Hamiltonian is given by

H = 6J+JCicos2y
1 1
= 5(<5+01)X2+5(5—01)13;. (4.10)

The stable condition for this linear Hamiltonian is |§| > C}.

The Boltzmann distribution is expressed as

1 H
p(H) = + exp Qe (4.11)

where 2 = /62 — C? is the tune of the Hamiltonian, € is the rms emittance of the

beam and N = 2meq is the normalization factor. One can easily obtain

(X?) = ,/‘HC1 €o, (4.12)

(P?) = ,/ — (4.13)
Therefore
255501 €0
by = B, ({X?) — (P? = 4.14
or
6% = 4C? B2 0b2 +C?, (4.15)

where (3, is the betatron amplitude function at the location of the Beam Position
Monitor. Therefore measuring the b; coefficient versus the machine parameter § =|
Vg — 30 | —3vm(by varying v,,) can be used to determine the emittance ;. This
provides an experimental method to measure the beam emittance. In this method,

two aspects help improve the precision, namely
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1. the coeflicient b; is calculated from Fourier transformation, and

2. the emittance is obtained by a linear fitting.

In order to increase the amplitude of b;, one can tune v, such that J is close to
C:. In other words, make rf quadrupole work at the frequency close to the resonance
frequency. It is also worth pointing out that 6 must be much less than v, — v,
thus the operation in one plane won’t affect the particle motion in the other plane.
The rf quadrupole must be adiabatically turned on and off to ensure the emittance

preservation during this process.

Particle simulation was done to test this method. 10,000 particles were initiated
in Gaussian distribution, each turn the particles passed through a one turn map
matrix and an rf quadrupole matrix. In the first 1000 turns, the strength of the rf
quadrupole increased adiabatically, while the modulation tune was maintained at a
constant value. During 1001 to 2000 turn, rf quadrupole ran at fixed amplitude and
frequency so the particle distribution reached equilibrium. From 2001 to 4000 turn,
< 2?2 > — < z >? was calculated turn by turn. After Fourier transformation the
parameters by and b; were obtained. Fig. 4.1 shows the quadrupole moment as a
function of revolution turns and the FFT spectrum. Figure 4.2 shows the parameter
62 versus the derived Fourier amplitude 1/b? from data of multi-particle simulations
with an initial emittance 1.0 7-mm-mrad. Using Eq. (4.14), one can deduce emittance
from the slope with the error of less than 3%. We note that, indeed, the curve is linear
for the linear betatron system, and the slope can be used to derive the emittance quite
accurately. The intercept of the line with the vertical axis at § = C can be used to

determine the betatron tune.
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Figure 4.1: Top: The second moment ((z?) — (x)?) derived from numerical sim-

ulation with parameters 6 = 0.0025, C; = 0.0005, v, = 8.7 and
Vm = 0.395. Bottom: FFT spectrum of the second moment, where
we obtain by = 3.405 x 107® m? and b; = 6.7 x 107 m?. Note that b,

and b; are defined as twice of the Fourier amplitude.



4.1 Emittance Measurement 55

4e-05

3e-05
2 L
5 2e-05 -

1e-05

3e+10

Figure 4.2: 6% versus ;7. o: C1 = 0.001, o: C; = 0.0005.
1

4.1.3 Nonlinear Hamiltonian

As we discussed in Chapter Three, the nonlinearity always exists in a real machine.
Boltzmann distribution is only a first order approximation in the presence of non-
linearity, and we don’t have an explicit form for the quadrupole transfer function.

Fig. 4.3 shows that 62 vs 1/b? derived from numerical simulations for non-zero detun-
ing parameter follows a family of nearly linear curves. The slope is reduced even for
the same initial emittance. Nevertheless, we can also derive the beam emittance and

the tune of the dynamical system by using a phenomenological formula:

201 By
by = C1Sreo , (4.16)
\/(5 + FCY:E:CC())Q — 012

where the nonlinear detuning coefficient oy, can be accurately measured by using

the method proposed in Ref. [17]. The derived emittance agrees well with the input
emittance as shown in Fig. 4.4 with F' ~ 2.5 +0.2.
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Figure 4.3: Data obtained from a Fourier analysis of numerical simulations. The pa-
rameter 62 is plotted as a function of é The parameters are C; = 0.0005
with a,, = 0,—-100,—200,—400,—800, and —1000 m~" respectively in
different symbols from the left-most to the right-most. The straight
line is shown to guide the eyes. The data is fitted to obtain the beam
emittance. The input rms beam emittance of all simulations is 1 7-mm-

mrad, and the betatron amplitude function is 16.7 m.

For an actual beam-emittance measurement, the machine operation condition
should be set such that it stays away from the nonlinear Mathieu bifurcation region

and the procedure to measure beam emittance in a storage ring goes as follows:

1. Minimize the linear coupling, and measure the nonlinear detuning parameter
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Figure 4.4: Comparison between the measured emittance (¢, from numerical sim-
ulation data) and the initial input emittance (¢ horizontal axis). A
total of 150 sets of numerical simulation data with different machine
parameters (C; ranging from 0.0005 to 0.005, and «, ranging from 0 to
-1000 m~') and different initial beam distribution functions (Gaussian
(circles) and uniform (diamonds)) are included in this plot for compari-
son. The spread arises essentially from the nonlinear detuning, and the

strength of C} parameter.
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2. Determine the rf quadrupole strength C; as we discussed in Chapter Three;

3. Measure the quadrupole transfer function b; as a function of the modulation

tune vy, (or the resonance proximity parameter §);

4. Use the measured data of b; vs d to determine the emittance. The parameter C;
depends on the strength of the rf quadrupole field and the value of the betatron
amplitude function. It should not be so large as to cause large beta function

perturbation.

4.2 Mismatch Compensation

The particles of the beam are distributed in phase space with width and height
that are called the beam ellipse. The transportation elements are characterized by
Courant-Snyder parameters. At any location they form an admittance ellipse. The
beam and admittance ellipses must match to preserve emittance. Mismatch means
the admittance ellipse doesn’t fit the beam ellipse, and this can cause emittance

dilution. Let the acceptance ellipse at the injection point of a synchrotron be
2 ! 2
vy* + 2ayy’ + By" = e, (4.17)

where «, 3,7y are the Courant-Snyder parameters of a synchrotron. The injection
ellipse is

Ny’ + 200y’ + Biy” = e (4.18)
for a mis-matched injection optics, where a1, 81,7, are the Courant-Snyder param-
eters from the injection line. Transforming the injection ellipse into the normalized

phase-space of the ring optics with Y = ﬁy and P = ﬁ(,ﬁy' + ay), we find

a1Y? + aY P + a3 P? = ¢, (4.19)
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- 2 _
where a; = £ + (D500l g, = g@lah and gy = &,

of the ellipse are given by F, = \/ Fom++F2,—1and F_ = \/ Fom — /F2, — 1,

where the mismatch factor F,,, is

The major and minor axes

Fom = %(%ﬁ + 61y — 20q ). (4.20)

The mismatch-angle between the major axis and Y axis is

1 [¢5))
mm = — arct . 4.21
0 5 IC an(a3 — CL1) (4.21)

The ellipse of the mismatched injection-beam will rotate because of the betatron
motion. If the betatron motion were linear, the injection ellipse would rotate forever
without emittance dilution. In the presence of nonlinear detuning, the bunch will
filament and fill an area of 7F?. The rms emittance of this diluted beam depends
on the particle distribution, and the rms emittance dilution factor is approximately

Fom.

4.2.1 Mismatch compensation for linear systems

Since the invariant torus is naturally elliptical when the rf quadrupole is modulating
at vm & |21, —n/, the torus can be used to compensate the mismatch. In other words,
the admittance ellipse can be adjusted by an rf quadrupole such that it matches the
injected beam. Note that if the injected beam is off-center, additional dipole is needed
to compensate the closed-orbit, i.e. the rf quadrupole can only modify the Courant-
Snyder parameters.

To match the ellipses, we need to adjust the shape and orientation of the accep-
tance ellipse. When the rf quadrupole is located at the injection point, the match
conditions are

. F-F?

— = = 4.22
6 F2+F% (4.22)
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Figure 4.5: The mismatched beam ellipse with I = I at the injection (Oth turn) is
captured by an rf quadrupole, and the rf quadrupole strength is adiabat-
ically turned off to restore the matched beam condition at the 3000-th

turn. The beam ellipse at the 1000-th turn is also shown for reference.

and

b = { (m = 2¢mm) /Vm for 6 >0 | (4.23)

2Ymm/Vm for § <0

where ¥\mm, Fy, and F_ are mismatch phase and factors, and 6, is the rf quadrupole
initial phase-angle. If the rf quadrupole is not located at the injection point, the
phase difference between the rf quadrupole and the injection point should be added
to or subtracted from v,,,. After the beam injection, we can adiabatically turn off
the rf quadrupole. Figure 4.5 shows the evolution of an injection ellipse in a numerical
simulation where the betatron functions for the acceptance ellipse are o = 1.5, § =
16.692 m, and v = 0.1947 m !, and the betatron amplitude functions of the injection
ellipse are oy = 1.4, f; = 12.6 m, ; = 0.235 m~!. The corresponding mismatch
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factors are Fi,, = 1.08728, F, = 1.2305, and F_ = 0.81268. The mismatched ellipse
at the first-turn is modified by an additional rf quadrupole, where the parameters for
the rf quadrupole are § = 0.01, C; = 0.0038087, and 0y = 1.05649. The rf quadrupole
is adiabatically turned off from 2000 to 3000 turns. The ellipses at injection (Oth
turn), at 1000-turn, and 3000-turn are shown in Fig. 4.5. The beam ellipses can be

perfectly matched by an rf quadrupole in case of linear betatron motion.

4.2.2 Mismatch compensation employing nonlinear Mathieu

instability island

In many accelerators, the nonlinear betatron detuning terms are un-avoidable. The
method discussed in the previous section can still be applied in the parametric region
(1) of Fig. 3.2. However, we can also use the nonlinear Mathieu instability island
in region (3) of Fig. 3.2 to compensate mismatch. Figure 4.6 shows an example of
the phase-space ellipse for a nonlinear Mathieu Hamiltonian (3.10) with parameters
§ = 0.02, C; = 0.007464, and oy, = —100 m . The Hamiltonian values of these tori
are H; = 8.27 x 1078 m and Hgg, = 7.86 % 1077 m. The invariant torus rotates in the
phase-space at a tune of v,,/2.

To achieve mismatch compensation, the phase-space area of an ellipse enclosed
by the separatrix torus must be larger than the rms phase-space area of the injected
beam, and the aspect ratio must be equal. The action I of a given torus at a constant

H is

I= L[—((5 + C cos 2¢) + \/((5 + Cj cos 2¢0)? + 2a,, H] (4.24)

CQyy

for the inner island (see the left plot of Fig. 4.6). The aspect ratio of a torus is

\/Iw_; _ \/—(5 —C)+/0 -+ 2001 (4.25)
0 —(6+C1) + /(6 + C1)* + 20, H
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Figure 4.6: Left: The invariant tori of the nonlinear Mathieu Hamiltonian with
parameters: 6 = 0.02,C; = 0.007464, oy, = —100 m . Right: The
ratio \/Imax/Imin as a function of the phase-space area of invariant tori

inside the middle island.

and the phase-space area is § Idi. The right plot of Fig. 4.6 shows the aspect ratio

as a function of the available phase area in m-m-rad. The formula for the bucket size

is complicated. However, one can use the condition that the minimum action g min

of the separatrix torus must be larger than 6¢;, of the injected beam to ensure enough
phase-space area for the injected beam, i.e.

2
Tsx,min = _oziyy (1 - %) > Geg. (4.26)
In summary, the procedure of mismatch compensation with rf quadrupole is as

follows

1. Adjust C;/4 to shape the aspect ratio of the rms admittance torus. We choose
the torus with phase space area of meg, and make the aspect ratio \/Inax/Imin =
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Fy/F_;

2. Change 6/a, to provide enough bucket area for the injection beam, the criterion

is Eq. 4.26;

3. Adjust the the phase of the rf quadrupole to match the orientation of the ellipses:
00 = (’ﬂ' — 21/Jmm)/l/m.

Where ¥mm,, F., and F are mismatch phase and factors. Here the 7 in the 6,
matching condition arises from the fact that the major axis of the ellipse is in the
Y = 7 direction.

We should note that the shape of the tori is not exactly elliptical. The aspect ratio
depends on the phase-space area (see Fig. 4.6), and hence one can’t fully compensate
mismatch with rf quadrupole in case of non-linear detuning. In realistic applications,
the ratio between the major and minor axes of a weakly mismatched injection-ellipse
in normalized phase-space is close to 1, hence we can choose |0| > |C}|, where the
aspect ratio is close to a constant if the beam emittance is small. Although the aspect
ratio increases rapidly with phase space area in Fig. 4.6, the beam actually stays in
very small region close to the origin. Note the abscissa scale of Fig. 4.6 is 10~*, and
the beam emittance is usually 10=7 ~ 107°.

Our simulations show that the final emittance can be well preserved by this sim-
plified matching condition.

In our multi-particle simulations, we use the identical mismatch parameters as
we have used in the previous section, i.e. the admittance ellipse parameters are
a = 158 = 16.692 m, v = 0.1947 m~!, and the injection ellipse is defined by
a; = 1.4, = 12.6 m, and 7y; = 0.235 m~*. The mismatch factors are Fy,,, = 1.08728,
F, = 1.2305, and F = 0.81268. Multi-particle simulations are carried out with
10000 particles in a Gaussian distribution at an initial rms emittance of 6.0 7-mm-

mrad. All particles are tracked for 3000 turns, and the rf quadrupole is adiabatically
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Figure 4.7: Left plots: The injected beam is mismatched at the top-left plot. Fil-
amentation is clearly shown in the bottom-left plot at 1000-th turn for
the mismatched beam. Right plots: Using nonlinear Mathieu resonance
to match the injected beam shown in the top-right plot, we find that
the beam emittance is preserved at 3000-th turn even in the presence
of nonlinear detuning parameter. The solid lines in this graph show the

20 admittance-ellipse.
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turned off from 2001 to 3000 turns. Based on our discussion above, the parameters
for the rf quadrupole and the octupole are set at 6 = 0.02, o, = —100 m™', and
C; = 0.007464 with a mismatch angle 6, = 1.0594. The octupole was treated as a
localized kick element, the kick is given by

0
SO I B , (4.27)

y Yo —TkYg
where 7, = ?’%ayy is the kick strength parameter. The top-left plot in Fig. 4.7 shows
the initial mismatched beam injected into an accelerator, where the 20 phase-space
admittance ellipse is also shown. The left-bottom plot of Fig. 4.7 shows particle distri-
bution in the phase-space at 1000 turn, where one observes filamentation of particle
distribution. If the rf quadrupole is properly implemented, the matched ellipse as
shown in the top-right plot of Fig. 4.7, the resulting emittance is preserved as shown
in the bottom-right plot of Fig. 4.7. The rms emittance measured at 3000 turn is
about 6.48 m-mm-mrad without mismatch compensation vs 6.01 7-mm-mrad with
mismatch compensation. For nonlinear Mathieu resonance islands, the invariant tori
is not perfectly elliptical. A slight increase of emittance arises from mismatch com-
pensation using nonlinear Mathieu islands arises from torus deformation. The left
plot of Fig. 4.8 shows the 1/10 o-ellipse at injection and the filamented ellipse at 3000
turn. On the other hand, if the ellipse is mismatched in the phase coordinate, the re-
sulting phase-space dilution will be large as shown in the right plot of Fig. 4.8 for the
1 o-ellipse, where the initial phase mismatch is 90°. Results of numerical simulations
also show that the emittance is not very sensitive to the aspect ratio, but more sensi-
tive to the phase matching condition. Since the island tune of the Mathieu resonance
island is highly nonlinear, the resulting emittance increase is limited. Clearly the
mismatch compensation with nonlinear Mathieu island is not as good as that using

the linear Mathieu phase-space distortion. The existence of octupole component can



66 4. Applications of RF Quadrupole

0.004 0002 ————————
1 i Turn=1000 |
x/ 0 \ 7 x/ 0 7 / \ 7
\ ] ’ 500 -
- Tun=0 \\A / 1
-0.004 =————t———+ -0.002 -———— "t
-0.04 0 0.04 -0.02 0 0.02

Figure 4.8: The left plot shows that the V100 ellipse will evolve with filamentation.
The right plot shows the evolution of the 1o ellipse with an initial phase
intentionally set at ¥ = 1y + m/2. We observe a much larger beam
filamentation. Because of the Mathieu island is highly nonlinear, the

ellipse is tightly wrapped.

change the aspect ratio and limit the bucket size. Fig. 4.9 shows the aspect ratio as

a function of C; for different nonlinear detuning parameter a,.

4.3 Overcoming spin resonances

The spin motion in electromagnetic field is governed by the Thomas-BMT equa-

tion [18, 19]
ds e = > - y Exfj
o C 1 B +(1+G)B — 4.2
it = oS X+ ENBL+ 1+ @B+ (Gr+ =] (428)

where S is the spin vector of a particle in the particle rest frame, B 1 and B]] are
the transverse and longitudinal components of the magnetic fields in the laboratory

frame with respect to gc, the velocity of the particle, E stands for the electric field,
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Figure 4.9: The aspect ratio changes as a function of C; at the point Iy—y =
50 x 1077 § = 0.002, from the inner to the outer «,, =
—1000, —800, —600, —400, —200 in sequence. The curve ends when the
edge of the bucket is reached.

G = (g —2)/2 is the Pauli anomalous g-factor, G = 1.7928474 for protons, and ymc?

is the energy of the particle.

In synchrotrons the dominant term in the square bracket is the first term, 7.e.,
the contribution due to the guiding dipole field dominates. Therefore the initial
polarization is usually in the vertical direction. Note the spin precesses at a spin-tune
of Gy, during the polarized beam acceleration, the spin-tune may sweep through many
spin depolarizing resonances. There are two kinds of spin resonances, imperfection
and intrinsic. Imperfection resonance stems from a distorted closed orbit, on which
the horizontal magnetic field is not zero. Therefore particles receive a kick every
revolution. The resonance happens when Gy is an integer. Intrinsic resonances are

driven by the horizontal magnetic field arising from the beam betatron motion. The
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resonance condition is Gy = kP+v,, where k is integer, P is the super-period number,
v, is the vertical tune. The imperfection resonance can be overcome by a spin-flipping
snake[21]. The Tune jump method can be used to avoid intrinsic spin resonance[20],
however, the novel rf dipole method turned out to be more feasible. The idea is to
generate a coherent dipole motion and induce spin flip to most particles in the beam
thus preserving the polarization[2]. Unfortunately, the coherent dipole excitation
produces two nearly overlapping spin-resonances, ¢.e. the intrinsic spin resonance,
and the induced spin resonance. Since an rf quadrupole can also induce coherent
quadrupole mode oscillation, it would be interesting to examine the capability of the
rf quadrupole on the spin-resonance compensation.

To overcome spin resonance, we work with the nonlinear Mathieu instability shown
in Fig. 3.2. As described in Ch. 3, the beam is moved slowly to avoid unnecessary
emittance dilution. In region 2, the stable fixed point bifurcates into two stable fixed
points. In this region, the unstable fixed point is located at I,s, = 0. Because all par-
ticles execute coherent betatron quadrupole-mode oscillations, the beam polarization
can be maintained after passing through the spin resonance.

If we assume that the beam distribution around two stable fixed points of the
Mathieu instability region is Gaussian, the spin flipping rate is given by the ensemble
average of beam distribution with the Froissart-Stora formula, i.e.,

Pf 2 Isfp 77’{’2/0‘ }
olf A — e L S 4.29
P, 14+ 7k?/a exp{ e 1+7k?/a ’ (4.29)

where I, is action at stable fixed point, & is the spin resonance strength for a particle

d(Gv)

7] is the acceleration rate.

with rms action %60, and o =

Using the AGS parameter as our working example, the spin flipping rate is shown
in Table 4.1, where we use the parameters: a,, = —200m !, C; = 0.01, § = —0.00626
and ¢y = 1.66 7-mm-mrad for the AGS beam to obtain Iy, = 18.7 mm-mrad. The

polarized beam acceleration rate is « = 4.86 x 107°. We can also calculate the
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polarization by carrying out an ensemble average of the beam distribution. These
two results are compared in the third and the fourth column of Table 4.1. Note
that the polarization based on a Gaussian distribution slightly overestimates the final

polarization value.

Table 4.1: Polarization rate for AGS

nP+v, K Polg /Pol;
Gaussian | Simulation
8.7 0.0061 | —0.878 —0.765
27.3 0.0051 | —0.796 —0.657
44.7 0.011 | —0.981 —0.940
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Chapter 5

RF Voltage Modulation

5.1 Voltage Modulation and Bunch Compression

The circulating beam in accelerators passes through the rf cavity each turn. The beam
is focused by the rf cavity if ¢s = 0. When the synchronous phase is not zero, the
total beam also gains energy from the rf cavity. The RF voltage might not be stable.
It is affected by rf noise, power supply ripple, wake fields, etc. If the perturbation
happens to be on resonance with the longitudinal motion of the particle, then the
particle will be lost. In other words, the average effect of the perturbation is trivial

unless it is close to the harmonics of the longitudinal oscillation frequency.

The first harmonic oscillation can be externally exerted on the beam by rf phase
modulation [23]. Rf phase modulation is equivalent to dipole mode perturbation when
the modulation frequency is close to the longitudinal oscillation frequency. The arrival
time of the bunch will oscillate at the modulation frequency. Due to the nonlinearity,
this oscillation will normally decohere in seconds at the cost of emittance dilution.
Recently interesting phenomenon has been found in Tevatron at Fermi Lab [24]. The

bunch oscillates at longitudinal oscillation frequency for hours without deteriorating
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the beam quality. This oscillation might be one reason which impedes the intensity-
improving project [25]. Although these phenomena are thought to be well understood
they can be complicated in practice.

Quadrupole mode oscillation in longitudinal phase space can be excited by modu-
lating the RF voltage near twice the synchrotron frequency [26]. Early research was
focused on the nonlinear properties and the confirmation of the Hamiltonian theory.
However, when quadrupole mode oscillation is excited, the moments of the beam will
oscillate, namely, the bunch length will oscillate while the emittance is preserved.
This can be used to compress the bunch. Short proton bunches are needed in the
generation of the secondary beam. The experiment of proton bunch compression with
voltage modulation has been done at the AGS [27]. Unfortunately they didn’t find a
way to compress the bunch.

Short electron bunches are needed in both current and future projects, like the
FEL project and the linear collider project [28, 29]. The gain length of the undulator
in an FEL facility is reciprocal to I'/3, where I is the peak current of the bunch.
Therefore shorter bunches result in higher power gain. The Same consideration is
found in the design of linear colliders. Higher frequency is preferred to obtain higher
energy gain on unit length, which requires shorter injected bunches. Currently a
bunch compressor downstream to the damping ring is the common solution.

The equilibrium bunch length in an electron storage ring is determined by the
aspect ratio of the ellipse-like tori of the longitudinal Hamiltonian. The aspect ratio
is related to the machine parameters, i.e., the voltage and the harmonic number
of the RF system, the phase slip factor, the synchronous phase and the energy of
the electron. In some cases the phase slip factor can be reduced by adjusting the
sextupoles in the ring [30], however, to maintain a stable operation, these parameters
are usually fixed, consequently the output bunch length is also determined.

The bunch can be compressed in the storage rings through beam manipulations.
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RF voltage and phase jump methods were explored at the IUCF proton storage

ring [31]. The aspect ratio, Z—?, is proportional to ——. Therefore if the initial

\ Vrf

cavity voltage is V; and the final is V5, and the emittance is preserved during this

process, then the bunch is compressed by a factor of (%)1/ . For electron machines the
synchronous phases have to be counted too. But usually the voltage of the RF system
can not be raised much, hence the compressing ratio of this method is limited. The
phase jump method moves the bunch to the unstable fixed point. The trajectories
around the unstable point are hyperbolic, and the bunch expands in (¢, ) phase space
in /4 and 57 /4 direction and shrinks in the perpendicular direction. The compressed
bunch can be accepted after a rotation of 7/4. But the nonlinearity will distort the
bunch when the particle is moved off the unstable fixed point, thus the emittance is
not preserved in this process. Also this method is not good for electron storage rings
because quantum fluctuations can cause serious emittance increase.

In this chapter we are going to discuss the beam dynamics under voltage modu-
lation, then apply it to electron bunch compression. The difference between proton

bunch compression and electron bunch compression will be also be addressed.

5.2 The Hamilton Dynamics with Voltage Modu-
lation

The synchrotron motion in a storage ring with voltage modulation can be described
by

Oni1 = On+ 2mhnod,

Ony1 = On+ .f(¢n+1) - f(¢8)

where f(¢,) = EZL% (1+bsin(vm ((¢pn — ¢s)/h+2nm) + X)) sin ¢y, , @5 is the synchronous

(5.1)

phase, 1 is the phase slip factor, and 1} and h are the voltage and harmonic number
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of the RF system respectively. The parameters related to the particle are: 3, the ratio
of the particle speed to the speed of light, e, the unit charge, and F, the energy of the
particle. The modulation parameters are: the fractional modulation strength b, the
modulation tune v,, and the initial phase angle x. Note the phase of the modulation
signal is related to the phase of the particle. Since (¢, — @5)/h is much less than 2nx
when n is large, this term can be ignored.

Eq. (5.1) can be derived from the following Hamiltonian

H= %}”752 5 ﬁQE(l + bsin(vmf + x))[cos ¢ — cos ¢, + (¢ — @) sin ],  (5.2)

with orbital angle § = 2nm as the time variable. Let ® = ¢ — ¢, and expanding the
Hamiltonian into a Taylor series, one obtains

1 eV cos ¢, . 1
H=_hno* - —"——(1+b m0 >

Without loss of generality, we assume the phase slip factor n > 0, or cos¢; < 0.

Transforming to the action angle coordinates (J, 1) with

& = /2hnJ/vscostp
§ = —\/2uJ/hnsiny ’

where v, = 4 /—’%7‘;?"’3 is the tune for synchronous particle, one gets H = Hy+ H1,

where

(5.4)

V' 2hnu,
3

h
Hy=v,J — tan ¢y J>/% cos®  — F”ﬁcos‘iw—l-..., (5.5)

and

2h 1h
H, = bv,J cos® 1 sin(vp,f + x)(1 — 5‘/ UUJ tan ¢ cosy — EULJ cos? 9 +...).(5.6)

Using the generating function

2hn tan ¢, 1%/% sin 3¢p + ~——L 2hn

367, N tan ¢,1%/? sin 1) (5.7)

B, I) =yl + -~
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the unperturbed Hamiltonian H, is transformed to
- hn - h -
Hy = v, — F"ﬂ cost ) — ?’7 tan2 ¢, 12 cos® . (5.8)

The average Hj is

- h 5 5
(Ho) = v,] — 1—2(1 + 5 tan’ 9,) 1% (5.9)

And the perturbation Hamiltonian H; at v, = 2v, is given by
1 ~
H, = —Zbysl sin(2¢ — vy,0 — x). (5.10)

Where O(I2) of Hy and non-resonance terms of H; have been ignored.
Transforming the Hamiltonian (Hy) + H; into the resonance rotating frame with
the generating function

1 v

Fow, 1) = (4 = 520 = Sx+ DI, (5.11)

the new Hamiltonian takes the following form
_ 1
H=AI - 5aﬁ + CI cos 2V, (5.12)

where (I, ¥) are conjugate phase-space coordinates, the resonance proximity param-
eter A, nonlinear detuning parameter «, and the resonance strength C are given

by

A=y, — ”7’" (5.13)
h 5
a= _77(1 + = tan® ¢,), (5.14)
8 3
1
C = —by;. (5.15)
4
The stable fixed points(SFP) are
A+C
s~ if VU < Uy
Isrp = ¢ . ; (5.16)

0 if vy < Ve OF Yy > Ve,
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where v, = vg(2+ 3b), vy = v5(2 — 2b). The unstable fixed points(UFP) are given
by

A-C
if Upm < Viis.
Iyrp = * e . (5.17)
0 if Vhigy > Vm > Vs
All the physics are the same as we have discussed in the previous chapters now
that we have an identical form of the Hamiltonian. The only difference is, here the
unperturbed Hamiltonian is on average, hence the particle should move around the

torus of the Hamiltonian. Fig. 5.1 shows the tori of the Hamiltonian and the real

traces of particles under different conditions.

5.3 Bunch Compression Parameters

We use the one stable fixed point side to compress the bunch, i.e., make the modu-
lation tune v, > v4,. As we demonstrated in Chapter Three, the aspect ratio is a

function of action I, or the Hamiltonian H. The aspect ratio of a particular torus is

given by
N > 200
Y A—-C++/(A+0) oH (5.18)
~A+C++/(A-0)?—2aH
The average aspect ratio is calculated by
(21 cos? W)
= /1 5.19
) =\ @rsmzwy’ (5-19)

where, for example, (21 cos? ¥) = 027T dv fooo dI2I cos* Up(I,¥), and p(I, V) is the
Boltzmann distribution. The analytic solution of (r,) is difficult to obtain; however,
it can be approximated by the aspect ratio of the torus which has area of mey, with

€y as the emittance of the beam.
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Figure 5.1: The tori of the voltage modulation Hamiltonian and the real trace of
particles. The parameters are oo = 0.07528, C' = 4.41 x 107°,b = 0.05,
A is different for each graph: up left: A = —1.005C, up right: A =0,
down: A = 2.0C. Traces of two particles are plotted in the down graph.

The tori rotate at a tune of v,,/2 in the lab frame, therefore the bunch length
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oscillates according to

hn €

202 1) [(ry)? + 1+ ((r)? — 1) sin(vf + )], (5.20)

2 _

Oy =

where # = 27n is the orbital angle starting from the first modulation turn. The
modulation has to be turned on adiabatically to preserve the emittance. Assume the
bunch is extracted N turns after the modulation, the initial phase which makes the

bunch minimum on extraction is given by
3
X=7r(§ —2Nvy,). (5.21)

Then the bunch is compressed by a factor of \/@ Fig. 5.2 is the plot of (r,) as
Um — V. Theoretically (rp) goes to infinity; however, in particle simulation it
saturates at a value of 4 ~ 8 depending on the emittance. Note this compression
ratio is independent of machine parameters, which means the bunch can only be
compressed by 2 ~ 3 times through this method. This is easy to understand because

Vyiey 18 the bifurcation point.

5.3.1 Bunch Compression in Electron Storage Rings

Damping and quantum fluctuation must be included for electron storage rings because
the damping time is of the same order as the voltage modulation period. According
to the Central Limit Theorem, the quantum fluctuation is just a Gaussian distributed
noise. The deviation of the noise is related to the machine parameters. The damping

and quantum fluctuation term can be included into mapping equations as follows

n = ¢, + 27hnd,
i1 o) n ’(5.22)
Ops1 = Op+ EQL;’;(I + bsin(v,0 + x))(sin ¢py1 — sin ¢g) — -5, + &,

WOTE
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Figure 5.2: The aspect ratio changes as A goes to —C'. The parameters used are:
b =01 C = 882x107° v, = 0.003529, a = 0.07528256, ¢; =
5.0 x 107°. The circles and triangles are the aspect ratios obtained from
particle simulation, and the curve is the aspect ratio of the torus with
the area of mey. (rp) saturates at 4.54 for this set of parameters. The
triangles are for the simulation with quantum fluctuation and damping,
but they are set to zero for those circles. The emittance is preserved

provided v; > vyify .

where 75 is the longitudinal damping time and &, is the quantum excitation term,

which is generated by a Gaussian distribution noise with deviation [33]

2 Cq’)/213

Ve \ 2L+ 1
where C; = 3.83 x 107 Bm, C¢ = 1.079 x 10 ®m?/(GeV)?, f, is the revolution

O¢ C€E3’YQI3 (523)

frequency, E is the energy in GeV, 7z is the longitudinal damping time, 7 is the
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relativistic energy factor and I, (n = 2,3,4) are the radiation integrals along the

machine.

Take the Next Linear Collider Main Damping Ring as an example. The related

parameters are listed in table 5.1.

Table 5.1: Parameters for Next Linear Collider Main Damping Ring [29]

Fig. 5.3 shows the damping process of NL-

C E Vs Oge O e TE Usr n VRF f O¢
m GeV % | Radian | ms | kV/turn | (x107*) | MV [ MHz | (x107°)
299.792 | 1.98 | 0.0035 | 0.091 | 0.054 | 2.6 T 2.95 1.07 | 714 3.56

CMDR. The bunch length, momentum spread and emittance decrease exponentially
and reach equilibrium after 7ms. The equilibrium particle distribution is Gaussian,
and the deviations are exactly the nominal values. The results indicate the quantum
fluctuation term in Eq. 5.22 is correct. The left plot of Fig. 5.4 shows the bunch
length oscillation while the modulation ramps up. The amplitude of the oscillation is
damped compared to that without damping and quantum fluctuation. The right plot
shows the emittance versus turn during the same process. The emittance increase is
very small when damping and quantum fluctuation are set to zero, however, there is
ten percent increase when they are included. Overall the voltage modulation offers
a new method to compress the bunch. Proton bunch can be compressed by 2~3
times without significant emittance increase. However, the electron bunch can only
be compressed by 1~2 times due to the radiation damping. There is also a slight
emittance increase due to the quantum fluctuation. This method is not so effective

in compressing the bunch.
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Figure 5.3: In all plots, circles are obtained from particle simulation, solid line is
Gaussian distribution with the nominal deviation. Upper left: Particle
distribution along ¢ — ¢, direction,o4 = 0.053 Radian. Upper right:
Particle distribution along ¢ direction, o5 = 0.091%. Lower left: Particle
distribution along the action J, the Gaussian distribution is given by
p(J) = %e‘J/eo. Lower right: The longitudinal damping process of
NLCMDR in the first 10ms after injection. The injection parameters

are o, = 0.15, 05 = 0.5%, the nominal equilibrium parameters are

o5 = 0.053 and o5 = 0.091%.
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Figure 5.4: Bunch length and emittance changes while the voltage modulation
strength ramps up. The strength increases adiabatically from turn
1,000 to turn 6,000. The solid line has damping and quantum fluc-
tuation on and the dotted line doesn’t. Parameters are b = 0.05,a =
0.07528, A = —1.05 x C, C = 4.41 x 107°. Left: Bunch length os-
cillation. At the minimum bunch length point, o, = 0.0435,0.0330
and o5 = 1.21 x 1072,1.56 x 102 respectively. Right: The change of
emittance. In the presence of damping and quantum fluctuation, the
equilibrium emittance is 4.82 x 1075. The emittance increases about ten
percent when damping and quantum fluctuation are included, but very

little when they are set to zero.
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Using Double RF Cavities to

Compress the Bunch

6.1 Introduction

Using a second harmonic RF system to lengthen the bunches and improve the beam

lifetime was first proposed by A. Hofmann and S. Myers in 1980 [34]. First we briefly

review the method. Assume the combined voltage of

V(¢) = Vo[sin ¢ + rsin(meo + ¢,)],

two rf systems is

(6.1)

where 7 is the relative strength of the second rf system, m is the harmonic number

and ¢, the initial relative phase angle. Let r and ¢, satisfy the following equations

dv(¢) d*v(¢)
d¢ ‘¢=¢s = 0’ and d¢2 ‘¢=¢s = 0 (62)
Therefore
. \/m2 cos? ¢; + sin? ¢, ’ (6.3)
m
¢, = —me, — arcsin Sm;bs. (6.4)

m-r
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Note ¢ must be re-calculated because the second rf system also contributes to the

total voltage at phase ¢;.

6 L
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Figure 6.1: The potential change due to the second harmonic cavity. The dotted
line is the original potential V,(¢) = cos ¢ — cos ¢s + (¢ — ¢5) sin ¢5. The
long dashed line is the potential due to the second rf system, Vo(¢) =
L (cos(mo+¢,) —cos(mds+¢,))+(d—ds)r sin(meps+¢,). The bold line is
the combined potential V,(¢) = V,(¢) + V2(¢). The left plot is for bunch
lengthening, the parameters are ¢, = 2.3288 Radian, ¢, = —5.1436
Radian, r = 0.38875, m = 2. The right plot is for bunch compression,
and ¢, = 2.3288 Radian, ¢, = —ma¢o; — 7, r =4, m = 4.

Fig. 6.1 has plots of the potentials for one and two rf systems. One can see that
the bottom of the potential is flattened by the second rf voltage. We tested this idea
by particle simulation and it works well. For the NLC the bunch length is increased
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by about 4 times with the parameters listed in the caption of Fig. 6.1. Harmonic RF
systems have recently been installed and commissioned on several light sources [35],
but with various lifetime improvement reported.

Note if we change the phase of the second voltage, the bottom of the total potential
is going to be narrower, which results in shorter bunches. This is the idea of this

chapter.

6.2 Beam Dynamics with a Second RF System

In order to compress the bunch, one wishes to maximize |%§f’)\¢s\. This leads to
¢, = —meos — . Without loss of generality we have assumed the phase slip factor
n > 0, or cos ¢s < 0. The potential of two RF system for bunch compression is also
plotted in Fig. 6.1.

The synchrotron motion of particle in a storage ring with double RF system can

be described by

¢ = hnd, o' =

QWﬂ;)E (sin ¢ — sin ¢4 + rsin(meo — mos — m)), (6.5)
where the prime indicates first derivative with respect to the orbital angle 6, h is
the harmonic number of the main RF system, 3 the fractional speed of the speed of
light, e the unit charge, and E the energy of the particle. Small oscillation around

the synchronous phase is given by

w_ hneVy cos qﬁs( _mr
2rB2E oS ¢

where A represents either § or ¢ — ¢,. Compared to the one RF system, here the

)A, (6.6)

mr
COoS ¢

restoring force is multiplied by a factor of L? = 1— , which could be much greater
than 1. Hence the first effect of second RF system is increasing the focusing force.
Note the sign of the second term can be changed by reversing the initial phase of the

second RF system, therefore one can always stabilize the motion given mr > 1.
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Equation (6.5) can be derived from the following Hamiltonian

1 eVo
H = —hnd?
M0t g

[cos ¢ — cos @5 + (¢ — ¢5) sin ¢, + %(cos(mqﬁ —ma¢s — ) + 1)](6.7)

with @ as time variable.
Letting ¢' = 0 and ¢’ = 0, one obtains the equations for the fixed points in (¢, §)

phase space
d =0, and sin ¢ — sin ¢; — rsinm(¢p — @) = 0. (6.8)

Note there are 2m pairs of (dysr, dusr) satisfy the above equations for ¢ € [0, 27],
which correspond to m pairs of stable and unstable fixed points. We are only in-
terested in the stable fixed point [@,,0] and the unstable fixed point [@,,0] with
¢u € [ps — m/m, ¢s]. The RF bucket is bounded by the torus passing through this

unstable fixed point, or given by

2 Wﬂi‘gh’l’] {COS (b — COSs ¢u + (QS - qu) sin (bs -
%[cos(mqﬁ — mas) — cos(mep, — mqﬁs)}} =0, (6.9)

The bucket width and height can be obtained from Eq. (6.9) by letting 6 = 0 or
¢ = ¢s. The bucket height is

eVo

0= w2Ehn

{cos ¢, — €08 P + (g — bs) sin ps +
%(1 — cosm(du — ¢5)) 12, (6.10)

The bucket is between ¢;—m/m and ¢s+m/m, and the bucket width is approximately
27 /m, which is much shorter compared to that of the original one RF system. The
bucket height depends on both 7 and m, but in most cases the bucket height is raised
by the second RF system. The bucket width and height as functions of r and m are
plotted in Fig. 6.2. In case of mr > 1, the functions of two RF systems are separated:

one mainly supplies acceleration, another offers focusing.
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Figure 6.2: Left:Bucket width as a function of r and m. r = 1,2,3,4,5 are calcu-
lated but the value of width almost overlap for different r. Right: Bucket
height for different » and m. From down to up, r =1,2,3,4,5,6,7 re-
spectively. The lines are plotted to guide the eyes.

To find out the detuning parameter and the tune, let ® = ¢ — ¢,, using a Taylor
expansion of the Hamiltonian around the synchronous phase, one obtains

eVo(mr — cos ¢;) 1(1)2 eVy @3 o4

— singg + — s —md ..(p.11
27 °E 5 QWBQE[GSIH¢ +24(cos<15 m°r) +...(6.11)

1
H = —hné* +
2
Transforming to the action angle phase space, i.e., letting

& = /2hnJ/Qscos
d = —+/2QJ/hnsiny ,

where @), = W is the tune for the synchronous particle, one gets
hnm3r — cos ¢,

2 s i S
V2hQs  sings g h— 75 J2eosteh,  (6.13)

3 mr — cos ¢ 6 mr — cos ¢,

(6.12)

H=Q,J] -
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where the higher order terms of J? have been ignored.
With the generating function
2h sin @
Fyw0) = oI+ Yo *ng
364/Q cos ps — mr

th_" SIPs 132 gin g (6.14)
4/Q, cos ¢y — mr ’

the Hamiltonian again is transformed to (I, Z) phase space as

I3/% sin 34

H=0, —@mgr_COS(bSIQCos‘lE—@( sin ¢y

— 7 )?I?cosb =, 6.15
6 mr — cos ¢, 3 mr—cosqﬁs) o8 ( )

Therefore the average Hamiltonian is
1 2
(H) = QsI — ial : (6.16)

with the detuning parameter

a:@[m?’r—cosm 5( sin ¢, 2.

b 6.17
8 "mr —cos¢gs 3 mr — cos @ ( )

Consequently the tune for the non-synchronous particle is (), —al. The beam satisfies
Boltzmann distribution [32], and can be well approximated by a Gaussian distribution

when al < Qg, and the aspect ratio of the torus is approximately hn/Q;.

6.3 Bunch Compression in Electron Storage Rings

In electron storage rings, the equilibrium momentum spread is determined by the

damping and quantum excitation, namely [33]

1
95 = 5V foT0e, (6.18)

Therefore, the equilibrium bunch length can be calculated by

hn

.75 (6.19)

Oge =
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Compared to the one RF system, both the bunch length and the emittance are reduced
by a factor of L. Because L = , /1 — cg:;s, the higher frequency RF system effectively

compresses the bunch.

Actually using one RF system with higher harmonic number, we can also obtain
shorter bunches. In the two-RF-system method, the beam loading happens only in
the lower frequency RF system. The power input for the higher frequency RF cavities
is to maintain the oscillation, and equals the energy dissiplation in the cavity only.
This might simplify the microwave power supply in practice.

When the harmonic numbe m of the second RF system is very large, the focusing
force is mainly from the second RF system. The first RF system is mainly used for
acceleration. This implies the particles might be accelerated by the peak value of the
RF voltage, namely, the synchronous phase can be set to /2. For the convenience of

comparison, the synchronous phase of NLCMDR is used in the following calculations.

6.4 Condition of Increasing Touschek Lifetime

The Touschek lifetime is proportional to 0,0,04(Agr)® [36], where Agp is the RF
bucket height. In our case, only o, and Agp are changed. In order to increase the

Touschek lifetime, the following condition must be satisfied

[0 ¢(ARF)3]TWO RF systems

> 1, 6.20
[0¢(ARF)3]One RF system ( )

Substituting for o4 and Agg, one obtains

[ co8 6 — o8 6, + (9 — ) sin 6, + £ (1 = cosm(6, — )]
T(T, m) = 3/2
1-— C(::;s |:(7T — 2¢) sin g5 — 2 cos (/55}
- (6.21)

Fig. 6.3 shows T'(r, m) for different  and m. Table 6.1 shows the minimum relative
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strength needed to increase beam lifetime for different m. We used ¢, = 2.329 Radian

in the calculation.

T(r,m)

07””\””\””\”H\HH\HH\HH\HH\HH vt 1l
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r

Figure 6.3: Lifetime increasing rate for different » and m. The only parameter

¢s = 2.329 Radian.

Table 6.1: Minimum Relative Strength to Increase Beam Lifetime

Tmin | 0 | 0.0085 [ 0.572 | 1.19 [ 1.91 | 2.74 | 3.68

The minimum relative strength for m = 2 is very small for 1.70 < ¢, < 2.70
Radian.
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6.5 Example and Particle Simulation

We again take the Next Linear Collider Main Damping Ring as an example. The
momentum spread of of the injected beam is 1% full width, or o5 < 0.2% and the
bunch length is less than 10mm, or o4 < 0.150 Radian for the current 714MHz RF
system. There are three bunch trains in the ring and each shall be damped for 25 milli-
seconds; however, only less than 3 milli-seconds is needed for longitudinal damping,
which leaves sufficient time for longitudinal beam manipulation. The parameters of
some possible two RF systems for NLCMDR are given in table 6.2. First we have
to choose the bucket size to avoid particle loss at injection. The momentum spread
of the injected beam is 1% full width, hence the bucket height must be greater than
this number. Note even when m = 8 the bucket width is about 0.8 Radian, which is
about 504, therefore the bucket width is not a limit.

We favor m = 4 since 2856MHz cavities are currently available. The relative
strength can be 4 ~ 5 to get a large compression parameter L and make the other
parameters reasonable. We take r = 4 in our particle simulation. Note the detuning
parameter « is increased by about 5 times, therefore we actually increase the effect of
Landau Damping. The Touschek lifetime also increases to 4.45 times of the original
value when beam reaches equilibrium. The tori of the Hamiltonians for one rf system
and two rf systems are compared in Fig. 6.4.

In particle simulation, we use the mapping equations including damping and quan-

tum fluctuation as follows

Pt ¢ mhn (6.22)

Ont1 = On + 5 (SinGpp1 —sin@s — 78in(myi1 —Mmes)) — 5 =0n + &n

where &, has the same meaning as we have described in Eq. (5.22). 10,000 particles
are initially distributed in (¢, §) phase space in a Gaussian distribution. The coordi-

nates are changed by the mapping equations every turn. Fig. 6.5 shows the damping
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Figure 6.4: The tori for the longitudinal Hamiltonian of NLCMDR. Top: original
Hamiltonian. Bottom: with a 4th harmonic rf system. Note the increase

of the bucket height.

process of the momentum spread, bunch length and emittance in 25 milli-seconds.
The equilibrium bunch length is 0.735 mm, which is about one fifth of the current

design value (3.6 mm). The results are as expected.
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Table 6.2: Parameters of Two RF Systems for NLCMDR

m| r | ¢, | Width [ Height(%) | Q o L | T(r,m)
0] 0 [0813] 2.324 1.51 0.0035 | 0.074 | 1.0 | 1.00
2| 5 [0.762 | 2.837 6.62 0.0138 | 0.0987 | 3.94 | 21.4
3(35](1.260| 1.961 4.60 0.0141 | 0.22 |4.03| 7.03
3| 5 |1.266| 1.972 5.43 0.0167 | 0.224 | 4.78 | 9.748
4| 3 |1.521| 1.501 3.70 0.0150 | 0.393 |4.30 | 3.431
41 4 [1.526| 1.504 4.22 0.0172 | 0.398 |4.93 | 4.450
41 5 [1.530| 1.506 4.69 0.0192 | 0.401 |5.49 | 5.470
5] 2 |1.674| 1.218 2.74 0.0138 | 0.607 |3.94 | 1.523
51 3 [1.683| 1.215 3.29 0.0167 | 0.620 |4.78 | 2.173
51 4 [1.687| 1.216 3.76 0.0192 | 0.626 |5.49 | 2.825
6| 2 | 1.784| 1.022 2.49 0.0150 | 0.883 |4.30 | 1.042
6| 3 [1.791| 1.020 2.99 0.0182 | 0.899 |5.21 | 1.494
71 2 |1.864 | 0.881 2.29 0.0162 | 1.21 |4.62| 0.755
7| 3 [1.869| 0.878 2.76 0.0197 | 1.23 |5.62 | 1.087
8| 3 [1927] 0.771 2.57  0.0210 | 1.61 |5.99 | 0.826
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Figure 6.5: r = 4,m = 4 for the second RF system. Equilibrium parameters are
0se = 0.091%, 04 = 0.011Radian, or o, = 0.735mm, €, = 1.0 X 1075.
Right plot details the first 3,000 turns. Note the quadrupole mode

oscillation at the beginning due to mismatch.
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Chapter 7

Conclusion

Quadrupole mode perturbation in both transverse and longitudinal directions has
been studied in this dissertation.
In the transverse direction, the perturbation is realized by inserting an rf quadrupole

in the ring accelerator. The original Hill’s equation is changed
y" + K(s)y = K,¢(s) cos(w, st + 6) v, (7.1)

where K, ((s) is the strength parameter, and w,; is the working frequency of the rf
quadrupole. We used the Hamiltonian method to solve this equation. In the resonance

rotating frame, the Hamiltonian has the following form (Eq.3.8)
H(1,I) =61+ C1I cos 21, (7.2)

where (I,1)) are action-angle coordinates, J is related to the frequency of the rf
quadrupole and C] is the effective strength of the rf quadrupole. This Hamiltonian is
time independent and the torus is elliptical. Particle simulation shows that the trace
of one single particle does move around the torus of the Hamiltonian.

According to Vlasov equation, the particle system governed by the above Hamilto-

nian must satisfy Boltzmann distribution provided the initial distribution is Gaussian.
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The Boltzmann distribution is given by

H LI 73
po(t) = e, (7.9

where () is the tune of the Hamiltonian, ¢, is the initial emittance of the particle

system. In case of the linear Hamiltonian, the Boltzmann distribution is [Eq.3.31]

1 _ 6Jy+ClJy cos 2¢y
pe(Jy, ty) = 5—e Preto (7.4)

2meg
The particle simulation results agree very well with this theoretical prediction.
The nonlinearity must be considered in a real machine. When a detuning term is

included, the linear Hamiltonian becomes (Eq.3.10)
1
H =61+ CiIcos2i + §ayy12, (7.5)

where o, is the detuning parameter. The torus of this nonlinear Hamiltonian is
much more complicated. It has bifurcation and triplication point. The beam can
be split into islands. The particle simulation still agree with the theory even in this
complicated case.

All of this discussion is in the resonance rotating frame. If observed from the lab
frame, the torus of the Hamiltonians rotates in phase space. This means the second
moments of the system oscillate in the lab frame. In accelerator physics, it means the
beam width oscillates with time. This oscillation signal can be detected by a Beam
Position Monitor. For the linear Hamiltonian in Eq.7.2, the emittance of the beam

can be deduced from the following formula (Eq.4.15)

1
6% = 4C? 5563@ +C?. (7.6)
For the nonlinear Hamiltonian in Eq.(7.5), one can still use a phenomenological for-
mula (Eq.4.16)
2015;560

by = .
' \/(6 + Foyge0)? — C?

(7.7)
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The particle simulation again supports these results.
The other applications of the rf quadrupole include mismatch compensation and
overcoming spin resonances. Particle simulation was also done to verify the theory.
In the longitudinal direction, voltage modulation can induce quadrupole mode
oscillation. If the modulation frequency is close to twice of the synchrotron tune, one

can obtain a similar Hamiltonian in the resonance rotating frame (Eq.5.12)
_ 1,
H=AI - 504[ + CIcos2V¥, (7.8)

where A, « and C are parameters related to the modulation and the particular ma-
chine. All the physics is the same as that in the transverse direction since the Hamil-
tonian is identical. In the longitudinal direction, quadrupole mode oscillation means
bunch length oscillation. If we extract the beam while the bunch oscillates to the
minimum, then the bunch is compressed. Our simulation shows that the bunch can
be compressed by about two times.

Finally the double rf system method was explored to compress the bunch. The

Hamiltonian method is again a good approach to analyze this problem.
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7. Conclusion




Canonical Transformations 99

Appendix A

Canonical Transformations

We want to transform the independent phase space coordinates g;, p;, to a new set

Q;, P;, with equations of transformation:

Qi = Qi(g,p, t)

. Al

In the meantime, there exists some function K(Q, P,t) such that the equations of

motion in the new set are in the Hamiltonian form

0K p= 2K
oP;’ ST

Transformations for which Eqgs.(A.2) are valid are said to be canonical. The function

Qi = (A.2)

K plays the role of the Hamiltonian in the new coordinate set.

From Hamilton’s principle [1] we know that

5 [ (e~ Hp ) =0 (A.3)

If the @; and P; are to be canonical coordinates they must satisfy a modified Hamil-

ton’s principle of the form:

5 ttz(z PQi — K(Q, P,1))dt = 0. (A4)



100 A. Canonical Transformations

The simultaneous validity of Eqgs.(A.3) and (A.4) require they differ at most by a
total time derivative of an arbitrary function F'. The integral between the two end
points of such a difference term is then

?dF
/t —-dt = F(t) — F(t). (A.5)

1

The variation of this integral is automatically zero for any function F' since the vari-
ation vanishes at the end points. The arbitrary function F' is called the generating
function of the transformation. F' must be a function of both the old and new vari-
ables in order to change the transformation. In addition to the time ¢ it may be a
function of up to 4n variables, where n is the number of degrees. Only 2n of these
are independent, because the two sets of coordinates are connected by the 2n trans-
formation equations of (A.1). The generating function can therefore be written as a

function of independent variables in one of the four forms:

Fl(QaQat): FQ(qa P7 t)7F3(p: Qat)7F4(p7 P7 t) (A6)

The circumstances of the problem will dictate which form is to be chosen. If the
first form Fj is a suitable choice then the integrands of Egs.(A.3) and (A.4) can be

connected by the relation:

. d
D _pidi—H =) PQi— K+ Fi(qQ1). (A7)

The total time derivative of F' can be expanded as:

dF, OF dQ, _OF dg _OF

= — A.
therefore Eq. (A.7) becomes
> 90 )d > 8@)@ + = (A.9)
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Since the old and new coordinates, ¢; and @); are considered here as independent,

Eq.(A.7) can hold identically only if the coefficients of the ¢; and Q; separately vanish:

oF, 0F;
b= aqz an ( )
finally leaving:
aFl
K=H+ — A1l

Therefore Egs.(A.10) yields the transformation and Eq.(A.11) provides the connection
between the new Hamiltonian K and the old one.
When the generating Function is of type Fj, the transition from q, Q to q, P can

be accomplished by a Legendre transformation, since

0F,

=P, A12
20, (A.12)
therefore F, can be defined in terms of Fj according to the relation
Fy(q, P,t) = Fi(g,Q,t) + Y _ P:Qs. (A.13)
Substituting F; back into Eq.(A.7), one can find the relation
6F2 oF,
i = , A4
Q=g (A.14)
and
oF,
K=H+— A15
+ 5 (A.15)

Similarly define F3 = Fy — Y ¢;p; and Fy = F; + Y PiQ; — >_ piq;, one can easily

obtain
aFg 8F3 8F3
= p=_""° K-+ 2 Al
qZ apzﬁ 7 aQZ7 + at bl ( 6)
and
G = 8F4,Q~ 8F4 K—H+ 8F4 (A.17)
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Appendix B

Boltzmann Distribution for the

Nonlinear Perturbed Hamiltonian

For the nonlinear Hamiltonian H(J,,¢,) = 6J, + J,C1 cos 2ty + ay, J2, if we write

the Boltzmann distribution as

1 8Jy+C1Jy cos 29y +FayyJ2

ppllpthy) = e (B.1)

then in principle, we can solve the normalization constant and the thermal energy

from the following two equations

foood‘]f dypp(Jy,y) = 1
JOUEY - YRy = «
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Let’s first calculate the normalization integral.

00 2
Inorm. = / dJy/ dwypB(Jy7¢y)

2 5Jy+%0¢yy-]§ Cy Jy cos 29y
= Tag, [ gy EE N
N 3/

Clj 5Jy+iayy‘]2

= W dJ _l()( Et ) t
2 0 *© ddytgayyly

= 10(0185)/ dJye Bt

27TEt

T 0
= N\ oy, 25

e“erfe(u) (B.3)

G 0. Iy(x) is the zeroth order Bessel function. In the

Wherefzmanduzm

case of u > 1, the complementary error function can be expanded in an asymptotic

representation
v’ 1 1-3  1-3-5
Bl _ B.4
erfe(u) = fu( 52 + w2~ (2w +-0), (B.4)
to obtain
T |2E, 0.1 1 1-3 1-3-5
Inorm. = 7 —1 —)—(1 — — —
N\ oy, 0(§8u)u( 2u? + (2u?)?  (2u?)? +e)
T [2FE, 1 262 1 1 1-3 1-3-5
= = 2 e 27 V(1 - _ )
N %y( +lgat ) l-55+ 2~ @y )
Note that
oF (n+k—1)!
kY -n __ (_ -n B.5
O R (5.5)
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10 |

EXP(u?) erfc(u)

Figure B.1: Solid line is the value of e*’erfc(u), the circles is the first two term

approximation, i.e. calculated by f(u) = \/— (1——+(21L§’) ). Therefore

2u?

u must be greater than 2 to keep accuracy. More terms won’t help.

where n, k are integers and n, k # 0, therefore

N [ay, 1 1 1-3 1-3-5
T\ ag, e = T 58 T G ey T

16,1 1 1-3 1-3-5
—(2)22(21—-4-3-— 4+6-5.-— " _8.7. ..
+ 205 22 T 2wy @y T

1 €,1 6/ 1 8 1-3 10! 1-3-5
g - = - 4> 0 7
t e W T ieer "o @ T
B 1 110 52
2 — £ T ou29! 652 N s e
1-3 10 4 1-3-51 95 6
SRLLL N AN S £+ (B

Qu2)2 410" Jiz— & (2u?)? 6106° Juz — &

where | u/€ |=| §/Cy |< 1 is required in our derivation and the following identity has
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been used
L _y pop (B.7)
Vit =t
with P, as the nth Legendre function.
Define
0 u?
G(u, &) = Io(fa—u)\h_re er fe(u)
o. .1 1 » [ 3¢
0(§8u)(u 2u3+e /u v 2x4)
1 1 2u?+¢&2 O o [P 3
— _Z I (E—)e" — B.8
Ji—g i —-gye T [ e ®9
therefore

2 Et
=2 /=L — 1. B.
Inm‘m. N 2ayy G(U” 5) ( 9)

For the second equation in 3.26, notice that

[e'e) 2
(Jy) = /0 dJy/O Ay Jypr(Jy, ty)

8 fe's) 2
= _Et_ / dJy/ dwypB(Jya¢y)
09 0 0

2m Et 0
_ B.1
N 2ay, 8uG(u’ &) (B.10)

and

[e'9) 27
(Jycos2y,) = / dJy, / dipy J,, cos 2y pp(Jy, Vy)
0 0

8 o0 27
= —Eta—q/o dJy/(; d¢ypB(Jy’wy)

2m Et 0
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Note (J, cos 21),) = (Y'?) — (P?) is negative when «, > 0. From above two equations,

one arrives at

(Y?y = (J,)+ (J,cos 21,)
2m Et 8 6
= —— — 4+ = B.12
a5+ 50w ). (B.12)
and
<Pyz> = (Jy) — (Jycos2¢y)
2T Et 0 0
_ 2 o_9 B.1
Therefore
2r E
(Y?WP)) = (555—)(Ga(u, €) — GE(u, ), (B.14)
N 2ay,
and (Y P,) is zero due to the symmetry, hence
2 E
B e - i) = (B.15)
Yy
Substituting N from Eq. (B.9), one gets
a? e
G2 (u, &) — G2(u, &) = —2 202G (u, ) (B.16)
u £ 52

Therefore one can solve for

Keeping G(u, &) to the first

u from Eq. (B.16) and then calculate N from Eq.. (B.9).
order of <, one obtains By = /62 — CZey and N = 2me,

which agree with Eq. (3.31). Keeping to the third term gives

1 1 2u?+ &2 3 Sut + 24u?E? + 3¢
= Jame aw-eprtn o woepr 0 G0
Su+ 962 15 8ut + 40u?€? + 15¢*
Gu(u,§) =~ — (u? _u§2)3/2 [1 o (2u2 _ ;2)2 39 - (u;i £2)4 L (B.18)
£ 6u? + 362 45 8ut + 12u2e? 4 £
Ge(u,§) ~ (u2 — £2)3/2 [1- 2(u? — 22)2 32 - (u? _u§2)4 . (B.19)
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2e+10 C T i

- = .

1.5g+10 o =

b, ;

1e+10 = =

56+09 | =

O :\ Il Il Il ‘ Il Il Il Il Il ‘ Il Il Il Il \:
5e—06 1e—05 1.5e—05 2605

Figure B.2: The comparison of the results of ;. The parameters used are C; =
l.e — 3, ay, = 50(A),100(0),200(0). The solid lines are the result
from equation (B.20) and the symbols are from the simulation. Note

the third solid line is supposed to fit the squares.

For the above functions to be convergent, the necessary conditions are v > 2 and

u?(1 —v?) > 1.

Define the quadrupole mode transfer function b; as following

bi = [28,(Jycos2¢y)|
1 6+3v° | 45 1 84120240t
B v 1= sammey T hw g

21 —p21 — 1 _2+v? 3 1 8+24v243v* "
Qyyt v 4u? (1—v2)2 + 32ut  (1-v2)*

(B.20)

Therefore in principle one can calculate b; once §, C; and oy, are given. Note G (u, &)
is a complicated function, the value oscillates term by term. As a result, this ap-

proximation is good only when « is small. For a certain C; one would prefer larger
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d to get Eq. (B.20) closer to the real result, however, the perturbation effect is small
while 0 is relatively large. Fig. B.2 shows the comparison between the simulation and
the calculation. For a@ < 100 the calculation result agrees well with the simulation,
however, when « is large, the result is not good. Further discussion can be found
in Chapter Four about the quadrupole transfer function. There a phenomenological

formula is used to solve this mathematical problem.
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Appendix C

Signals from Beam Position

Monitor

Figure C.1: Charge density on the surface of a cylinder.

As is sketched in Fig. C.1, consider a line charge inside an infinitely long circular
conducting cylinder with radius r. If the line charge density is A\g, and it is off center

by distance a, then the image charge —)\, is located at distance b = r%/a from the
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center. The electric potential for the two line charges is given by

(”)—

where ¢y is the permittivity of vacuum. The charge density on the inside surface of

Ao -
—adl——In|r— 1
= oI B, (1)

the cylinder can be calculated by

O-(Ta 9) = 6OEwr = —¢ V (I)(F)
Ao r? — a2

= — C.2
2nrr2 + a2 — 2racos @ (C2)
Note
,,,.2 _ a/2 1 + 619

=Re(—Lt—=)=1+2 0 C.3
r?2 + a2 — 2racosf (1——6Z9 + Z " cosnd, (C.3)

therefore
—— 142 (9 C4
o(r,0) = 7r7°[ + Z " cosn (C.4)

In reality the beam is not a line charge, and its transverse dimension is comparable to
the radius of the beam pipe, therefore one has to integrate over the current distribution
of the beam to get the charge density on the Beam Position Monitor. Suppose the
beam has a current distribution Ip(a,d,), where I is the total current of the beam,
p(a,8,) is the normalized beam distribution, then the total image charge density on

the inside surface is given by

oy(r, 0) = —% / da / Ao, 00)[1 + 232" cosn(0 )] (C.5)

Usually the Beam Position Monitor consists of two or four round metal strips,
and they are installed symmetrically around the beam pipe center. Suppose the open

angle of one strip is from 6, to 6y + A6, then the total charge on this strip is given by

6o+A0
o(60) = / d00, (. 0)

90

= da/d&ap a,0,)[A0 + Z "cosn(fy — 0, + AG/2) sinnAb/2].
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Adding up all four signals from a four-strip BPM, one gets
21
q(0) + q(0 + 7/2) + 4(90 +7) +q(0o + 37/2) = _;[Ag
/da/d&ap a,,) ( ) cos4dn(0y — 0, + AB/2) sin2nAf]. (C.6)

Usually a/r is small, therefore the first term is the dominant term and it is propor-
tional to the current of the beam.

Substracting two opposite strip signals gives

I
4(60) —abo +m) = —5— da/deap(a, 0,)

= 8
X nz_; L (g)wl cos(2n — 1)(6p — 0, + AB/2) sin(2n — 1)AG/2, (C.7)
Keeping only the dominant term, one obtains

q(6o) — q(6p + )
~ —4—I sin AQ/Q/da/deap(a, 6a)acos(By — 0, + AG/2)

mr?

= —4—7{ sin AQ/2 [( ) cos(bp + AG/2) + (z) sin(By + A@/Q)]
T
_ — AL sin £ (z) if 6y + AB/2 =0 | 3
—%smg(z) if 0y + AO/2 =7/2

where (z) = [ da [ df,p(a,0,)acosb, is the horizontal average position and (z) the
vertical average position. Note the result is related to the open angle by sin Af/2,
hence large A#f results in better sensitivity. For two-strip BPM, A# can be up to m,
therefore it can be more sensitive than four-strip BPM does in detecting the position
of the beam.

Combining the four signals as
21
a(00) + 000 + ) — 4l +7/2) — 4(bo + 3/2) = —— / da / d0,p(a, 0.)

2
S (2)4n=2 cos(an — 2)(G — B + AG/2) sin(2n — 1)A8.  (C.9)
n — T

M2

X

n=1

Il
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Again keeping only the first term, one gets

q(60) + q(0o + ) — q(0 + 7/2) — q(00 + 37/2)
41
/da / dfyp(a,b,)a® cos(20p — 26, + Af) sin Af. (C.10)

~
~

s

Letting 6y + Af/2 = 0, one obtains
Al 2 2
(o) + q(bo +m) — q(bo +7/2) — q(6o + 37/2) ~ s Ad({z") — (z7)),(C.11)

where (2?) = [da [ df,p(a,0,)a*cost,. Therefore one gets the information of the
moments of the beam, and then the emittance can be deduced from this result.

Due to the circuit connection, the real signal from the BPM is the combination
of the original and the retarded reflection signal, which makes the data processing

complicated. Refer to [37] for details.
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