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Abstract

A deflecting cavity is required for transverse-longitudinal emittance exchange scheme [1,2]. John Power found, by tracking calculation, that a reference particle receives a transverse off-set after passing through a deflecting cavity [3]. Don Edwards computed the transfer matrix of a 1-cell, pill-box deflecting cavity including the offset [4]. Here we show that the off-set can be made to vanish either by adding a short cavity at each end of the main cavity, or by choosing the size of the beam hole properly.

TRAJECTORIES THROUGH DEFLECTING CAVITIES
1. Introduction

A deflecting cavity is required for transverse-longitudinal emittance exchange scheme [1,2]. John Power found, by tracking calculation, that a reference particle receives a transverse off-set after passing through a deflecting cavity [3]. Don Edwards computed the transfer matrix of a 1-cell, pill-box deflecting cavity including the offset [4]. Here we show that the off-set can be made to vanish either by adding a short cavity at each end of the main cavity, or by choosing the size of the beam hole properly.

2. π-Mode Pill-Box Cavity

Here we consider a cavity consisting of several pill-box cells in π -mode configuration. For deflection, the mode in each cell is TM011. The non-vanishing components of the electromagnetic field near the cavity axis is 
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The coordinate system is such that the cavity axis is the z-direction, while x and y are the two transverse coordinates. The step function Θ(z) is necessary to represent the fact that the cells are connected in a π -mode configuration. It is defined to be unity in magnitude and alternating in signs from one λ/2 cell to the next. We choose z=0 be the center of the middle cell and assume that the cells are placed symmetrically about the middle cell. Thus,
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……
Here λ = 2π c/ω is the free space wavelength. The cell arrangement is shown in Fig. 1.


The equation of motion is then
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Here
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where Ee is the electron energy. We set 
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where
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Here Δz is the longitudinal position of the particle relative to the reference particle. Throughout this note, we will regard θ as constant, neglecting a small change due to acceleration.

By using Eq (7), we can integrate Eq. (4) with respect to z. For a cavity extending from -ℓ to ℓ, we need to use integral:
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In the above we used the fact that Θ(z) = Θ(-z) to drop the terms in the integrand containing the factor sin kz since it is an odd function.
If
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Then
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Therefore the transverse angular kick increases linearly as the number of the cells, which is why a multi-cell cavity is used.


An odd integer n corresponds to the case of n-full cells. Note that the number of the full cells can be only an odd number due to our symmetry assumption. An even integer n, on the other hand, corresponds to the case where a number of full cells are flanked at both ends by a half-cell, a cell of length λ/4. See Fig. 1

As an example where Eq (11) is not satisfied, consider the case where a single full cell is flanked by a cavity of length shorter than λ/2. Then
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Performing the integral Eq. (10), we obtain the change in the slope 
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 as follows:
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Here and in the following, 
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 is one half of the total length of the cavity in radians: 
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The transverse displacement can be computed by integrating Eq. (4) by means of manipulation such as follows:
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The first term involves the same integral as in Eq. (10), and the evaluation of the integral in the second term is facilitated by expanding the integrand into the odd and even functions in z. We then obtain
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Equations (14) and (17) reproduce the results obtained by D. Edwards for the case 
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 = π/2 [3].

The last term in Eq. (17) is the transverse offset of the reference particle for which x1 = x1′ = θ = 0. Guessing that the situation here is similar to the case of the particle trajectory through a periodic undulator, where a “half period” must be added at both ends to avoid a net displacement, one may expect that the offset may be removed if a cell of length λ/4, a “half cell” is introduced before and after the main cell. This correspond to the case ℓ = λ/2 or 
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 = π. However, the trick does not work; the last term does not vanish when 
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 = π.

However, the off-set will vanish if 
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 is chosen so that 




[image: image25.wmf]0

sin

cos

2

=

-

+

f

f

f

.
(18)

The solution of this equation for π /2 ≤ 
[image: image26.wmf]f

 ≤ π (corresponding to the range (13)) is
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Therefore, the length of the end cell should be very short, about one third of the half cell.


The momentum kick can be obtained by inserting the transverse trajectory expressions into Eq. (5) and integrating it. This was done by D. Edwards for 
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 = π /2. For a general case with an arbitrarily ℓ, however, the computation is quite tedious and will not be reported here.

3. Hybrid EM Mode

The pillbox cavity considered in the previous section is the limiting case where the radius of the beam hole ρ vanishes. An approximate but simple expression for the electromagnetic field taking into account the non-vanishing ρ was “derived” and known as the hybrid electromagnetic (HEM) mode [5]. Its components of the electromagnetic field for the standing wave case are as follows:
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The factors sin kz and cos kz replace Θ(z) in the pill box case. These field expressions result from the Maxwell equations with two assumptions: First, each field components is a sum of terms, each of which is a product of two functions, one a quadratic polynomial involving the transverse coordinates x and y and another depending only on the longitudinal coordinate z. Second, the azimuthal component of the electric field vanishes at the beam hole radius 
[image: image30.wmf]r

=

+

2

2

y

x

.  Ref. 5 gave a derivation of the HEM mode for traveling wave case. The derivation for the case of the standing wave is given in Appendix.

The field computed by Microwave Studio for a realistic cavity with a beam hole is shown in Fig. 2 and resembles closely those given by Eq. (20), except that the field amplitudes decrease rapidly outside the cavity.


Neglecting the quadratic terms, the trajectory equations for a HEM cavity are:
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In the above
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Equation (21) can be integrated. Neglecting terms quadratic in x1, x1′, and θ, the results are:
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Equations (24) and (25) correspond to Eq. (14) and (17) for the pill box cavity, respectively, except here 
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 = kℓ is arbitrary, not restricted by the inequality, Eq. (13).

We note from Eq. (25) that the transverse offset for the reference particle, for which x1 = x′1 = θ = 0, vanishes if 2
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 cos 2
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 - sin 2
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 = 0, which is satisfied if 
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The first solution in the above, ℓ = 1.43 λ/4, is close to the solution for the pillbox case, Eq. (19).


The offset also vanishes when 
[image: image43.wmf].,

.

,

2

1

e

i

=

x





[image: image44.wmf]l

p

r

2

1

=


(27)


Although the solution given above will be modified for a realistic cavity with field vanishing gradually outside the cavity, it is reasonable to expect that there will be solutions for a realistic cavity resembling these solutions. 

For the realistic cavity worked out by John Power [3], we have 
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Using these values, we obtain (ξ – ½) = 0.142, a rather small value. The corresponding transverse offset is significantly smaller than that for the single cell pill box cavity.  In such a case, the contribution from the terms linear in θ are not negligible, and may also change the sign of the transverse offset. John Power found such a small offset.


To find the momentum kick, it is necessary first to find expressions for x(z) and x′ (z) within the cavity, insert them into Eq. (22), and integrate the resulting expression. The calculation is laborious and was done by using Mathematica. The result for a general case contains too many terms. For the case ξ – ½ = 0, the result simplifies considerably and is as follows:
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APPENDIX

We consider Maxwell equation in free space with the harmonic time dependence e-iωt. The two curl equations are:
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We assume that each field component is of the following form:
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Where Ti(x,y) is polynomial in x and y containing up to quadratic terms.


Now consider the modification of the field profile due to the circular beam hole in a TM011 cavity as shown in Fig. 3. Due to the surface current, charge will accumulate at the hole radius, inducing an electric field in the hole region. From the symmetry of the field distribution, we can then write down the most general expression for each field component quadratic in the transverse variables x and y as follows:
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Here the coefficients a, b,…are functions of z.


Each field component must satisfy the wave equation:
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Inserting Eq. (A.3) into (A.9), and demanding this be satisfied for arbitrary values of x and y, we find
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From (A.10) and (A.11)
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which then implies
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From (A.14) and (A.15), it then follows:
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Thus, we see that Ex satisfies the transverse Laplace equation:
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From Eqs. (A.4) and (A.5), it also follows that
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Similarly we can show that u=0, and therefore all components of magnetic field satisfy
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It then follows that all coefficients satisfy (A.14) and is proportional to 
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Here 
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 is equal to k = ω/c in magnitude but can be of opposite sign. This distinction is necessary later to construct the standing wave solution.

We now look at the curl equations component by component, using Eq. (A.3) – (A.8). We then find the following relations among the coefficients:
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There are no more relationships from Maxwell equations and the symmetry.

We now impose the condition that the tangential component of the electric field at the radius ρ of the beam hole vanishes:
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Using Eqs. (A.3) and (A.4), this becomes 



[image: image73.wmf](

)

(

)

.

0

2

2

2

2

2

2

2

=

-

+

+

-

=

-

+

+

-

r

x

c

a

x

d

y

x

y

c

a

y

y

x

d


(A.24)

Thus,
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Using Eqs. (A.19 – A.22) and Eqs. (A.25, A.26), we determine all field component in terms of the coefficient 
[image: image76.wmf]e

:




[image: image77.wmf](

)

)

(

2

2

2

4

kct

z

k

i

x

e

y

x

k

i

-

-

+

-

=

E

r

e


(A.27)




[image: image78.wmf])

(

2

t

kc

z

k

i

y

e

y

x

k

i

-

-

=

E

e


(A.28)




[image: image79.wmf])

(

kct

z

k

i

z

e

x

-

=

E

e


(A.29)




[image: image80.wmf]y

x

ik

c

x

2

e

=

B


(A.30)


[image: image81.wmf]


[image: image82.wmf](

)

)

(

2

2

2

4

1

4

)

(

1

t

kc

z

k

i

y

e

y

x

ik

k

ik

c

-

ú

ú

û

ù

ê

ê

ë

é

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

B

r

e


(A.31)



[image: image83.wmf])

(

t

kc

z

k

i

z

e

y

k

k

c

-

-

=

B

e


(A.32)

This is the traveling wave form of the SEM mode, derived by Montague [5]. The standing waveform is obtained by constructing 
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and similarly for the magnetic field. One then obtains field expression for the standing wave HEM mode given by Eq. (20).
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Fig. 1.
Cell Arrangement of π-mode Pill Box Cavity. The vertical blue lines are ends of full (λ/2) cells and the vertical red lines are those of half (λ/4) cells.
E(V/m) vs. z (mm) at x=5mm and y=5mm
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Matlab plots B(tesla) vs. z (mm) at x=5mm and y=5mm
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Fig. 2.
Electric and Magnetic field components computed from Microwave Studio for 
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 cell cavity with a beam hole.
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Fig. 3.
Field and Current Schematics of the HEM Mode. The lines on the side wall are; green=magnetic field, red=current, blue=electric field. Note the charge accumulation at the perimeter of the beam hole.
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