
Eclipse, Java, Scientific
Software, Etc.

Kenneth Evans, Jr.

Presented at the European Synchrotron Radiation Facility ESRF
May 3, 2007
Grenoble, France

Outline

Scientific Software and Examples
Java
Eclipse and Examples
Eclipse RCP Applications
AWT and SWT
X-Ray Software Development at the APS

Scientific Software

The language of choice used to be FORTRAN
– There are still many legacy FORTRAN codes in use

C and C++ have become popular
– Grid computing now tends to be done in C

Many scientists use Python
– Reasonably powerful, yet easy to use
– Allows them to do science rather than software

There are now a number of significant scientific projects using Java
– Many started out as C, but have evolved to Java

Java is now an acceptable, if not the preferred, language for scientific
software development

Java Analysis Studio (JAS3)

Developed by and for the High-Energy physics community
Plotting of 1d, 2d, 3d Histograms, XY plots, Scatter plots, etc.
Open source
Attractive plotting
Fitting, other mathematical analysis
– Primarily from CERN

Highly modular structure
– Uses plug-ins

JMol – Molecular Viewer

Commonly used as an applet
that can be integrated into web
pages to display molecules in a
variety of ways
Also has a standalone
application and a development
tool kit that can be integrated into
other Java applications
Interactive, 3D
Free, Open Source

One of several Java Molecular
Graphics packages

•Crystal structure of an H/ACA box RNP from Pyrococcus
furiosus (PDB CODE: 2HVY)

VisAD

Space Sciences and Engineering Center (SSEC) and others
Extensive 2D and 3D visualization package
Free, Open Source

VTK

Software system for 3D computer graphics,
image processing, and visualization
Used by thousands of researchers and
developers around the world
Written in C++
Has Java wrappers
– Also, Tcl/Tk, Python

Free, Open Source

ISAW

•From: John Hammonds, IPNS

The primary tool for analyzing neutron scattering data at the IPNS
Has an extensive and sophisticated interface

Java ?

Java has become a major language
The reason is that most commercial development uses J2EE
– There is money to be made improving Java and its tools

Applications have performance approaching applications written in C
There is already extensive scientific development in Java
In my opinion, there is no other viable choice for high-quality, cross-
platform, GUI development
– Huge API
– Write once, run anywhere
– Easy to code (compared to C or C++, anyway)
– Good performance
– Excellent development tools

Java Development Tools

Spell checks as you go
– No “write – compile – load – run – figure out what happened” cycle
– Probably the one most significant productivity enhancement

Provides content assist
– Probably the next most significant productivity enhancement

Compiles as you write
– Cycle is now “write – run”

Massive refactoring
– e.g. Change a variable name in all your files in all your projects

Wizards and Tools to help at every stage
– e.g. Generate getters and setters for all your properties
– e.g. Add and/or clean up imports

The above are just a small sample
– Some of these are available for other languages
– But usually not at the level they are for Java

Java in Matlab
Matlab has extensive support for Java
– Your favorite software framework can also be used in Matlab

Eclipse

Eclipse is an Open Source community
It was started in 2001 by IBM
– IBM donated a lot of research
– Controlled the early development, but later relinquished control

It is now controlled by the Eclipse Foundation
– Strategic members contribute up to $500K and 8 developers
– Currently 17 strategic members
– Currently more than 150 developers

Out of the box it looks like a Java IDE (Integrated Development
Environment)
It is really a Plug-in manager
– That happens to come with Java Development plug-ins
– You can make it be most anything you want

Eclipse Consortium Strategic Members

*

*
*

*

•* Strategic Consumer

http://www.windriver.com/
http://www.actuate.com/
http://www.bea.com/
http://www.borland.com/
http://www.ibm.com/
http://www.intel.com/
http://www.iona.com/
http://www.scapatech.com/
http://www.sybase.com/
http://www.zend.com/
http://www.hp.com/
http://www.sap.com/
http://cswww.essex.ac.uk/PLANET/summer-school-02/sun-logo-new.GIF
http://images.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/simple/9/9c/Microsoft_Windows_logo.gif&imgrefurl=http://simple.wikipedia.org/wiki/Microsoft_Windows&h=196&w=287&sz=12&tbnid=eynSai-BDnQJ:&tbnh=75&tbnw=110&hl=en&prev=/images%3Fq%3Dmicrosoft%2Blogo%26hl%3Den%26lr%3D&oi=imagesr&start=2
http://www.ca.com/
http://www.mvista.com/
http://www.compuware.com/
http://www.serena.com/
http://www.nokia.com/

Eclipse is Very Extensible and Very Flexible

Eclipse Project

Java
Development

Tools
(JDT)

Their
Tool

Another
Tool

Plug-in
Development
Environment

(PDE)

Eclipse Platform

•Modified From: Tony Lam, ICALEPCS Presentation, October 2005

Your
Tool

Eclipse Layout Fundamentals
Perspective: A particular layout of a Workbench window
– Has zero or one Editor Area and zero or more surrounding Views

Editor Area

Perspective
Editor

Editor
Editor

View

View

View
View

View
View

View

View
View

Workbench
Window

Eclipse as a Java IDE

GumTree (ANSTO)

•From: Tony Lam, ICALEPCS Presentation, October 2005

EPICS Control System Studio

EPICS IDE : IOC Development

A Perspective Can be a Single Application

X-Ray Experiment

•Images from: BLU-ICE and the Distributed Control System, NOBUGS III, January 2000

Rich Client Platform (RCP)

“Rich Client” is a term from the early 1990s that distinguished applications
built with Visual Basic and the like from “Console” or “Simple” applications
Eclipse is particularly suited to Rich Client applications
The possibility of using the Eclipse platform for applications was there from
the beginning, but foreshadowed by its use as an IDE
– In the early days it required hacking to make Rich Clients

RCP is now (as of Eclipse 3.1) supported by the interface and encouraged
You essentially use Eclipse as a framework for your application
– You inherit all of its built-in features
– As well as those from other community plug-ins

You include only the plug-ins you need
Is a very extensible development platform
– You can use plug-ins developed by others as needed
– Others can use yours and extend them

Eclipse as a Rich Client Platform

Looks like an application, not an IDE
Inherits a lot of functionality
– Persistence (Properties and Preferences)
– Help
– Featured About dialog (like Eclipse’s)
– Splash screen
– Dockable windows, and much more …

•Java Application •RCP Application

•Pyre Application

•probe.py --frame.pvName=Xorbit:P1H1:CurrentAO

Probe on Steroids
Leveraging the Eclipse Framework

An RCP Application is also a Plug-In

AWT vs. SWT - You Have to Decide

AWT / Swing (Abstract Windowing Toolkit)
– Write once, run anywhere
– Formerly ugly, with bad performance
– Now look and work well
– Use garbage collection
– Come with the JDK and JRE

SWT / JFace (Standard Window Toolkit)
– The important fact is that Eclipse uses SWT, not AWT
– Supposed to look better, run faster
– A thin wrapper around native widgets
– SWT components must be disposed (vs. garbage collected)

• Owing to need to free native resources
– Need JNI libraries for each platform
– Distribution is through the Eclipse Foundation, not Sun

AWT vs. SWT - More Considerations

It is not easy to convert between them
The SWT look is not obviously better
The performance difference may not be there either, today
Eclipse uses SWT
– They are supposed to mix and match, but ???

Sun is unlikely to include SWT support in the JDK and JRE soon

SWT Platform Dependence

Example: Working Windows dialog doesn’t work right on Linux

Combining Swing and SWT - SWT_AWT Bridge

ContentPane of JFrame is
embedded in an SWT Composite
Menu Initialization is separate
from other UI initialization
– Standalone Swing version

uses Swing menus
– RCP versions uses RCP

workbench menus
– Both can call same instance

methods (or not)
This application also uses JAI
and J3D
– Both are Java extensions
– Don’t play well with Eclipse

Deployment is a Major Reason for Using Eclipse

Both Java and Eclipse are multi-platform
Updates are easily made through the Eclipse update mechanism
You can wrap 3rd party applications in your own plug-ins
– For example:

The Feature “XRAYS JFreeChart”
contains gov.anl.xrays.jfreechart
which wraps JFreeChart

– Including DLLs and Shared Objects
Guarantees they are versions that

work with your applications on all
supported platforms

Makes it easy for the user to install
and update both your stuff and the
3rd party stuff

Eclipse Bottom Line

Is a very powerful and extensible IDE and Framework
Is also an IE - A way to organize your work
Is Open Source
Has a community
Is supported by most of the industry
Has a large number of developers (>150)
Has significant financial backing
Are many 3rd-party Plug-ins, both free and commercial
Are more than 60 open-source projects
– From Web Tools to Code Profilers

Is continuing to expand and improve rapidly
Is free
Downsides
– Is a continually changing, moving target

Lessons Learned

Eclipse as a workbench seems more attractive than Eclipse RCP
applications
Writing full-fledged Eclipse plug-ins entails a fairly steep learning curve
The SWT / AWT dichotomy is a nuisance but not a real impediment
The best (perhaps only feasible) way to handle 3rd party libraries is to
wrap them in a plug-in
Eclipse solves a number of thorny problems
– Especially deployment and commonality

We don’t see a better alternative

X-Ray Software Development at the APS

Best described as “Uncoordinated”
Wide variety of languages
– FORTRAN, C, C++, Perl, Tcl/Tk, Python, Java, …

Visualization relies on (different) commercial products
– IDL, IGOR, Matlab, …

Each beamline tends to do its own thing
Modeling and Analysis is not well integrated with Data Acquisition
Lack of real-time data reduction
Little high-performance computing
Little remote access
No common data format

A Scientific Software Section was formed to help remedy this situation

Scientific Software Section

Specific goals:
– Combine existing analysis and visualization codes with beamline data

acquisition software and transform these codes into easy-to-use
software

– Provide a scientific workbench program that is easy to use and learn
and from which users can access all the software that is necessary to
manage the entire scientific work flow

– Create new analysis and visualization applications that can be used
on all beamlines and that are easily integrated into the standard
workbench

– Develop a software framework, perhaps more than one, that provides
tested and debugged scientific routines, such as fitting and
visualization, which can be used by developers to create applications

– Create an interface to the facilities necessary to provide high-
performance computing

– Provide documentation, distribution, maintenance, and support

Scientific Software Section Web Page

XRAYS

Stands for X-Ray Analysis Software
– (or X-Ray Software)

It is expected to grow into a large suite
of analysis and visualization applications

These will include:
– Scientific workbench program
– New analysis and visualization applications
– Updating and coordination of existing analysis and visualization

applications
– A framework of software routines that developers can use to write

applications
It currently consists mostly of exploration and prototype applications
– This is the groundwork for what we really want to do
– More than 1200 Java source files in 60 projects
– 38 Java projects intended for distribution (gov.anl.xrays.xxx)
– 10 ready-to-deploy features (collections of projects) in 4 categories

We Want to Manage the Entire Experimental Data Flow

raw data (2-D intensity,
E, T, P, t, etc.)

reduced data, I(Q)

adjustable
parameters

data reduction

experiment(s)

data analysis modeling

publication, presentation,
archival, printing

visualization

XRAYS Rationalization for Eclipse
Providing coordination is a primary goal
Resources are limited
Have to choose something
– Eclipse seems like the best choice
– Powerful, flexible, extensible
– Open-source
– Huge community with many projects

Java development environment leads to high productivity
Deployment via plug-ins appears to solve many problems

We intend to use Eclipse, not as an IDE, but as a workbench
– Something users will use

Downsides
– Most x-ray beamline staff and users are not using Eclipse now
– 95% will be unhappy [with anything we do]

Ready to Deploy Now

These Eclipse projects are ready now to be made available through the
Eclipse update mechanism
Waiting for license and license-related issues

Eclipse for Users, not Developers

We intend to use Eclipse as a workbench
Something a user can come in and be up and running with in a short time
– Probably with community help

Each user can use and customize it in his or her own way
– (That is what Eclipse provides)

They will probably use it for more than one thing
– That is why the layout by Perspective is important
– You just switch perspectives to change tasks

I think this paradigm is better than using RCP applications
– You provide the plug-ins
– The user manages the Workbench as he or she pleases

Image Editor as an Experiment Prototype

Prototype Implementation of ISAW

Includes:
– A Perspective
– An Editor for

ISAW DataSets
• .run, .isd

– Some Views

All work together
– Views change

when the edited
file changes

Prototype Image Analysis Tool using VisAD Graphics

Now Incorporated Into Eclipse

Longer Term

Resources are currently limited
Eclipse and Java applications are where we are starting
– These are client-based applications
– Partly driven by the fact that x-ray data is localized

We expect to incorporate high-performance computing
– Typically means clusters and grid computing
– These are server based
– Data on centralized servers is more typical of other communities
– Eclipse is not the obvious tool

We cannot limit ourselves to Java
– There are legacy FORTRAN codes that need to be incorporated
– There are many other languages

• In particular, Python is heavily used in scientific communities
• C and C++ will continue to be important

The licensing and other legal structure need to support all of these

Thank You

This has been a

Scientific Software Presentation

Thank You

This has been a

Scientific Software Presentation

	Eclipse, Java, Scientific Software, Etc.
	Outline
	Scientific Software
	Java Analysis Studio (JAS3)
	JMol – Molecular Viewer
	VisAD
	VTK
	ISAW
	Java ?
	Java Development Tools
	Java in Matlab
	Eclipse
	Eclipse Consortium Strategic Members
	Eclipse is Very Extensible and Very Flexible
	Eclipse Layout Fundamentals
	Eclipse as a Java IDE
	GumTree (ANSTO)
	EPICS Control System Studio
	EPICS IDE : IOC Development
	A Perspective Can be a Single Application
	X-Ray Experiment
	Rich Client Platform (RCP)
	Eclipse as a Rich Client Platform
	Probe on Steroids�Leveraging the Eclipse Framework
	An RCP Application is also a Plug-In
	AWT vs. SWT - You Have to Decide
	AWT vs. SWT - More Considerations
	SWT Platform Dependence
	Combining Swing and SWT - SWT_AWT Bridge
	Deployment is a Major Reason for Using Eclipse
	Eclipse Bottom Line
	Lessons Learned
	X-Ray Software Development at the APS
	Scientific Software Section
	Scientific Software Section Web Page
	XRAYS
	We Want to Manage the Entire Experimental Data Flow
	XRAYS Rationalization for Eclipse
	Ready to Deploy Now
	Eclipse for Users, not Developers
	Image Editor as an Experiment Prototype
	Prototype Implementation of ISAW
	Prototype Image Analysis Tool using VisAD Graphics
	Now Incorporated Into Eclipse
	Longer Term
	Thank You
	Thank You

