
Pelegant: A parallel accelerator simulation
code for electron generation and tracking

Y. Wang and M. Borland
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA

Abstract. elegant is a general-purpose code for electron accelerator simulation that has a world-
wide user base. Recently, many of the time-intensive elements were parallelized using MPI. Devel-
opment has used modest Linux clusters and the BlueGene/L supercomputer at Argonne National
Laboratory. This has provided very good performance for some practical simulations, such as mul-
tiparticle tracking with synchrotron radiation and emittance blow-up in the vertical rf kick scheme.
The effort began with development of a concept that allowed for gradual parallelization of the code,
using the existing beamline-element classification table in elegant. This was crucial as it allowed
parallelization without major changes in code structure and without major conflicts with the on-
going evolution of elegant. Because of rounding error and finite machine precision, validating
a parallel program against a uniprocessor program with the requirement of bitwise identical results
is notoriously difficult. We will report validating simulation results of parallel elegant against
those of serial elegant by applying Kahan’s algorithm to improve accuracy dramatically for both
versions. The quality of random numbers in a parallel implementation is very important for some
simulations. Some practical experience with generating parallel random numbers by offsetting the
seed of each random sequence according to the processor ID will be reported.
Keywords: Computer modeling and simulation, particle accelerators, parallel computing
PACS: 07.05.Tp, 29.27.-a

INTRODUCTION

Pelegant stands for “parallel elegant,” which is a parallelized version of
elegant [1]. Written in the C programming language with MPICH [2][3], Pelegant
has been successfully ported to several clusters and supercomputers, such as the “weed”
cluster (a heterogeneous system of 100 CPUs) at the Advanced Photon Source (APS),
and the Jazz cluster (350 Intel Xeon CPUs) and the BlueGene/L supercomputer (1024
dual PowerPC 440 nodes) at Argonne National Lab (ANL). Thanks to careful design in
parallelization and good architecture of the serial elegant, Pelegant achieves very
good performance. For example, for a simulation of 105 particles at the APS, including
symplectic element-by-element tracking, accelerating cavities, and crab cavities, the
simulation time was reduced from 14.3 days to 42 minutes on 512 CPUs of the Blue-
Gene/L (BG/L) supercomputer. The speedup for this particular simulation was 484 with
efficiency near 95%.

Here we report on the parallelization strategy and numerical issues for validating the
parallel implementation against the serial program. Detailed information about how to
install Pelegant, run the code, and optimize the performance can be found at [4],
which also includes a list of parallelized elements in one of the appendices.

PARALLELIZATION STRATEGY

We parallelized elegant using the master/slaves (manager/workers) model. The time-
intensive tracking parts of elegant are being parallelized gradually. The other parts
are done (redundantly) by all the processors, which is acceptable since those processors
have already been allocated to a particular Pelegant run. We divide the beamline
elements into four classes:

1. Parallel element: only the slave processors will do the tracking. Each slave is
responsible for a portion of the particles.

2. MP (multiprocessor) algorithm: the master will participate in the tracking, but it
only gets the result of collective computations (e.g., sum, average) from the slaves,
without doing any computations itself.

3. Uniprocessor element: must be done by master (for now) and modifies particle
coordinates. An example for the present version of Pelegantwould be wakefield
elements.

4. Diagnostic: same as the uniprocessor element, but doesn’t change particle coordi-
nates. An example would be the WATCH element (which variously analyzes particle
distribution or dumps raw particle data to a file).

A flag was added to elegant’s dictionary for each beamline element to identify its
classification. The master is responsible for gathering and scattering particles as needed
according to this classification. By adding the flag to the elements, communications
can be minimized to achieve the best efficiency of parallelization. For example, it is
not necessary to communicate the coordinates of particles between master and slaves
when tracking through two continuous parallel elements. Similarly, we only need to
gather particle coordinates from slaves to master (without subsequent scattering) when
the particles go through a diagnostic element, such as a WATCH point with coordinate
output.

In our master/slave model, the master is responsible for I/O operations and commu-
nicating with the slave processors only, i.e., it will not do the tracking for most of the
elements. To run simulations efficiently, we also suggest that the user arrange all serial
elements in a continuous sequence when possible, which will minimize the communi-
cation overhead for gathering and scattering particles. This will be unnecessary in the
future when all of the elements are parallelized.

By default, Pelegant is built in such a way that it does load balancing after each
pass through the accelerator. This is particularly important when the user does not have
exclusive use of the nodes. When running Pelegant in an environment where only
one user is allowed to run a job on a computer node at a time, Pelegant can be built
(using a compiler flag) to redistribute particles (workload) only if the particle number
is changed. Pelegant also has the ability to allocate workload according to the real
speed of a processor. This is crucial to achieve best performance on a cluster consisting
of CPUs of different speeds, such as APS’s weed cluster.

Figure 1 shows, in a crab cavity simulation, that Pelegant achieves very good
efficiency, which is defined as the the speedup divided by the number of processors. For
example, if the number of processors is less than or equal to 512, the efficiency is more

FIGURE 1. The efficiency of Pelegant for the crab cavity simulation (100,000 particles) on the
BlueGene/L supercomputer at ANL.

than 90%. For 1024 processors, the efficiency goes down to 78% due to communications
overhead and serial I/O bottlenecks.

NUMERICAL ISSUES FOR VALIDATION

Validating a parallel program against a uniprocessor program with the requirement of
bitwise identical results is notoriously difficult [5]. Some of the problems we may meet
include different ordering of summations and non-scalable random number generators.
We ran a regression test of nearly 100 cases and validated the results of Pelegant
with the serial elegant. Discrepancies are not uncommon in our comparison due
to the reasons above. Although the simulation results with the discrepancies should
conform to IEEE 754 within some tolerance, more consistent results can be expected
with more accurate numerical algorithm, such as Kahan’s summation formula [6], which
has been employed in both serial and parallel versions of elegant. Random numbers
also play an important role in elegant. In our regression tests, some of the parallelized
beamline elements involve simulations with random numbers. We report our experience
of implementing a parallel random generator in the second part of this section.

Kahan’s Summation Formula

As the computers we use today have finite precision, the rounding errors of floating-
point arithmetic operations can not be avoided. For those elements needing collective
operations, e.g., a very long sum, the results of Pelegant and elegant could be

different. This is because the floating-point arithmetic is not associative, and the parallel
version will not keep the same order of operations as the serial version. This makes vali-
dation by comparing the result numerically very hard. Figure 2 illustrates the difference
between these two versions.

FIGURE 2. Different order for a long sum between parallel and serial versions.

One possible solution to get better agreement is to improve the accuracy of both ver-
sions. We implemented Kahan’s summation formula [6] for the very long sum opera-
tions in the simulations. The numerical results of parallel and serial versions then agree
very well. Suppose that we want to compute ∑ j=N

j=1 X j: with the traditional summation
algorithm where we just add the summand one by one, the error could be as bad as
Nε ∑ j=N

j=1 |X j|, where ε is the machine precision. For double precision, ε = 10−16. The N
here can be understood as the number of simulation particles, which in elegant can
be very large, thus making the results inaccurate.

FIGURE 3. An intuitive explanation of the Kahan’s algorithm.

In contrast, the error bound for the Kahan summation formula is just 2ε ∑ j=N
j=1 |X j|.

The formal proof of this error bound can be found in [6]. An intuitive explanation of
how the Kahan summation formula works is illustrated in Figure 3. We consider each
summand X j as two separate parts: the high-order bits Xh and the low-order bits Xl .
When a summand is added to the Sum, the low-order bits will be lost because of limited
machine precision. To recover the low-order bits, we first compute the high-order bits
by subtracting Sum from T _Sum. Then X j(= Xh + Xl) is subtracted from Xh to get the
lost low bits, which will become the correction factor for the next loop. There is not
much difference between the parallel and serial versions of Kahan’s formula, except the

correction factor for the last step on each processor should be collected together as the
correction factor of the final result.

Figure 4 shows the discrepancies of average momentum in the cases with and with-
out Kahan’s algorithm. From the solid line in the figure, we can find that the results
of Pelegant and elegant are almost identical when Kahan’s algorithm is applied,
while a discrepancy of 10−9 is found without Kahan’s algorithm. Although the differ-
ence is trivial for this one-turn simulation, the accumulated errors after thousands of
turns could be very large, which could not only cause inaccurate numerical results, but
would also make the validation procedure (against serial version) extremely difficult.
The application of Kahan’s algorithm in both elegant and Pelegant improves the
accuracy significantly and makes the validation procedure much easier.

FIGURE 4. The discrepancies of average momentum with and without Kahan’s algorithm in a crab
cavity simulation.

Parallel Random Generator

A scalable random number generator is very important for correct parallel implemen-
tation. “Poor random number generators are like bugs in a software program,” says David
Ceperley, a physicist at NCSA and the University of Illinois at Urbana-Champaign.
“They can distort your results and sometimes cost you hours of computing time.” There
are several parallel random number generator packages available. One of these, the Scal-
able Parallel Pseudo Random Number Generators Library (SPRNG) [7], has been widely
used in the literature because of its high quality. Although it is convenient to take advan-
tage of an available parallel random generator, we would like to parallelize the existing
random generator in the serial elegant because of the special requirements for this
particular parallel implementation:

1. There are four different random sequences in the simulation software. Some of

them are required to have the same sequence on different processors, for example
the random generator for the input beam or for magnet errors. Others need to have
different sequences on different processors, for example the random generator for
elements that scatter the beam.

2. The random number sequence for the serial version should not change, in order to
make it convenient for verifying the result with the previous versions of elegant
numerically.

3. A simple interface was needed that did not require too many changes in the original
structure of elegant.

As a result of these considerations, we did not use SPRNG. However, we choose
SPRNG as the reference to evaluate the quality of our own parallel random number
implementation.

FIGURE 5. The phase space after a canonical kick sector dipole magnet on ten processors. Picture on
the left: without a parallel random number generator; picture on the right: with a parallel random number
generator.

If one naively converted a serial code into a parallel one, the same random number
sequence would be repeated across all the processors. The result is the same as if they
had run the job on a single processor with a much smaller sample size. This is because
all of the random generators have the same seed, which is usually given by the user
or the developer. For a parallel implementation, we need to find the appropriate way
to make different processors have different seeds. To satisfy the requirement that the
seed of the random number generator must be a large odd number, we offset the seed
of all the slave processors by two times its ID number from the seed of the master
processor. This makes all the processors have different random sequences without too
many changes in the interface. Figure 5 shows the phase space after particle tracking
through a canonical kick sector dipole magnet with quantum excitation. The picture on
the left is the case where all of the processors repeat the same random sequence. The
picture on the right is the result when our parallel random generator was used. The
phase-space result from Pelegant with a parallel random generator agrees very well
with the result of elegant. We also did some tests comparing the correlation of the
different random sequences generated on different processors with the SPRNG package.
The correlation coefficients in our implementation are between 1e-3 and 1e-2, which is

the same order as the SPRNG package. In a two-dimensional visualization result, we
observed both parallel random sequences distributed uniformly in the specified area.

CONCLUSIONS AND FUTURE WORK

Many of the time-intensive elements in elegant were parallelized, in particular,
those that do not involve collective interaction of particles. This reduced the simulation
time for some practical problems very significantly. The parallel version produces
results that conform to the tested and established serial version. This goal was achieved
by applying Kahan’s algorithm in both elegant and Pelegant to improve accu-
racy, as well as by making a correct implementation of a parallel random generator
appropriate to elegant’s architecture. elegant’s extensive regression test suite
was used for this purpose. Several physicists at APS have benefited already from the
current evolution of Pelegant. A public version will be available for download at:
http://www.aps.anl.gov/Accelerator_Systems_Division/Operations_Analysis/software.s
html. In the future, we will continue to parallelize elements for the simulation of
collective effects, including wakefields and resonant impedances. We also plan to take
advantage of parallel I/O in MPI-2 [3] to improve the performance for multi-million
particle simulations.

REFERENCES
1. M. Borland, “elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation,” Advanced

Photon Source LS-287, September 2000.
2. W. D. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message

Passing Interface, 2nd edition. MIT Process, Cambridge, MA, 1999.
3. W. D. Gropp, E. Lust, and R. Thakur, Using MPI-2: Advanced Features of the Message-Passing

Interface, MIT Process, Cambridge, MA, 1999.
4. Y. Wang, M. Borland, and R. Soliday, “User’s Manual for Pelegant,” 2006.

http://www.aps.anl.gov/Accelerator_Systems_Division/Operations_Analysis/oagSoftware.shtml.
5. W. D. Gropp, “Accuracy and Reliability in Scientific Computing,” Chapter in Accurate and Reliable

Use of Parallel Computing in Numerical Program. SIAM, 2005.
6. D. Goldberg, “What every computer scientist should know about floating-point arithmetic,”

ACM Computing Surveys, 23(1):5–48, March 1991. http://docs.sun.com/source/806-
3568/ncg_goldberg.html.

7. “Scalable Parallel Pseudo Random Number Generators Library,” http://sprng.cs.fsu.edu/.

