
Beam Steering in the A0 Photoinjector
Casey Bennett – August 8, 2008

I. Introduction

 The A0 Photoinjector is a ~10 meter long electron linac located at Fermilab. The control system
for the photoinjector is DOOCS, a program written in C++, developed by DESY. DOOCS has many
features, but the most germane to this report are its ability to read beam position monitors (BPMs), and
read and set currents for trim dipoles, which steer the beam. DOOCS also offers an API for programs to
use to access these features.

II. The problem

 DOOCS is a powerful control program, but it does not offer anything in the way of automatic
beam steering. Presently, the operator has to change trim currents manually in order to steer the beam.
This can be a time-consuming process, but can be automated to greatly reduce the time necessary to
operate the photoinjector.
 There are two major objectives with regard to beam steering. One is minimization, or steering
the beam so it goes through the BPMs in their center. The other is steering the beam to go through a
certain point, which can be accomplished using bump algorithms, such as the three bump or the four
bump.
 Particle accelerators can be modeled using transport matrices, which are 6x6 matrices that
encapsulate all data about how the beam will move through any given element in the beamline.
Through some basic linear algebra, one can predict how a given beam will move through the beamline
with a great degree of accuracy.

III. The program

 The program that has been developed this summer is written in C++ and interfaces with
DOOCS through the so-called “simple” interface. It is intended to be generic in its approach, so it
should work with any linear accelerator, as long as its configuration file (containing a machine-readable
description of the beamline) is accurate. A user interface, known currently as A0shell, allows the
machine operator to minimize the beam, bump the beam, and also offers a few informational functions
such as calculating a transport matrix between any two given points.
 The program was designed using the object-oriented paradigm extensively. Each beamline
element, such as a BPM, dipole, quadrupole, or drift, is represented in the program as an object. These
elements are placed in an array in another object, a Beamline, which is basically a wrapper class around
this array with a variety of utility functions. This simplifies adding additional features to the program in
the future, if necessary, and also makes the program very generic, and thus, portable to other linear
accelerators.
 The minimization itself is performed in a “black box” library function, from the Root library.
This function performs a kind of simplex minimization to determine trim currents, which are then given
to DOOCS, which in turn sets the currents of the trim magnets. Because pure mathematics does not
give exact answers to real-life problems, multiple iterations of this function must be performed to get
adequate results from the program.
 Bumping, however, has a more naive and purely mathematical approach to tackling its problem.

1 of 4

Beam Steering in the A0 Photoinjector
Casey Bennett – August 8, 2008

The formulas are used directly in the program to determine currents, which are given to DOOCS. This
approach, however, does generate good results in the photoinjector.

IV. Data

1. Minimization
The following two graphs show the beam offset from “perfect” (BPM readout=0), from the
initial conditions to the fifth iteration.

0.3 3.19 4.65 7.62 10.12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X Plane

Init
After 1
After 2
After 3
After 4
After 5

Longitudinal pos. (m)

|o
ffs

et
| (

m
m

)

0.3 3.19 4.65 7.62 10.12
0

1

2

3

4

5

6

7

Y Plane

Init
After 1
After 2
After 3
After 4
After 5

Longitudinal pos. (m)

|o
ffs

et
| (

m
m

)

 The next two graphs are identical to the two above, but omit the initial conditions and the first
iteration, to show more detail.

0.3 3.19 4.65 7.62 10.12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X Plane

After 2
After 3
After 4
After 5

Longitudinal pos. (m)

|o
ffs

et
| (

m
m

)

0.3 3.19 4.65 7.62 10.12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Y Plane

After 2
After 3
After 4
After 5

Longitudinal pos. (m)

|o
ffs

et
| (

m
m

)

2. 4 Bump
 The following two graphs show the initial conditions before a four bump (of x=1 at
z=4.654), the conditions following the four bump, and the conditions after a “return” bump (a four

2 of 4

Beam Steering in the A0 Photoinjector
Casey Bennett – August 8, 2008

bump in the opposite direction as the first). The first and third graphs, ideally, should be identical.

V. Conclusions

 The minimization data, shown above, shows definite convergence toward zero, which is the
desired outcome. A0shell is capable of steering a beam toward the center of the BPMs with little error,
although beam jitter causes the readouts to thrash around a bit with more iterations, especially far
downstream. A0shell does detect when it has converged (when the readouts are all within the BPMs'
resolutions) and ceases accordingly.
 Problematic, however, is the black box minimization function's inflexibility in certain areas. For
instance, it is not possible to give it an upper limit to the corrections it gives, and thus, if a trim dipole
is very close to a BPM, it may direct the magnet to use a current higher than it is designed to use. The
program prevents the current from actually reaching the dipole, but nonetheless, this would interfere
with minimization.
 In addition, the program does not know where the beam pipe lies. It is possible for the function

3 of 4

Beam Steering in the A0 Photoinjector
Casey Bennett – August 8, 2008

4 of 4

to send the beam into the actual vacuum pipe unknowingly, though this is naturally more of a problem
with bumps than with minimization.
 Regarding the bump, the four bump performs as one would hope. There is a slight (0.8 mm)
divergence downstream of the bump, but the return bump is within 0.2 mm of the initial conditions.
The second can be accounted for by beam jitter, and the first by inaccuracies in the configuration file.

