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I. Introduction 
 
 The A0 Photoinjector is a ~10 meter long electron linac located at Fermilab. The control system 
for the photoinjector is DOOCS, a program written in C++, developed by DESY. DOOCS has many 
features, but the most germane to this report are its ability to read beam position monitors (BPMs), and 
read and set currents for trim dipoles, which steer the beam. DOOCS also offers an API for programs to 
use to access these features. 
 

II. The problem 
 
 DOOCS is a powerful control program, but it does not offer anything in the way of automatic 
beam steering. Presently, the operator has to change trim currents manually in order to steer the beam. 
This can be a time-consuming process, but can be automated to greatly reduce the time necessary to 
operate the photoinjector. 
 There are two major objectives with regard to beam steering. One is minimization, or steering 
the beam so it goes through the BPMs in their center. The other is steering the beam to go through a 
certain point, which can be accomplished using bump algorithms, such as the three bump or the four 
bump. 
 Particle accelerators can be modeled using transport matrices, which are 6x6 matrices that 
encapsulate all data about how the beam will move through any given element in the beamline. 
Through some basic linear algebra, one can predict how a given beam will move through the beamline 
with a great degree of accuracy. 
 

III. The program 
 
 The program that has been developed this summer is written in C++ and interfaces with 
DOOCS through the so-called “simple” interface. It is intended to be generic in its approach, so it 
should work with any linear accelerator, as long as its configuration file (containing a machine-readable 
description of the beamline) is accurate. A user interface, known currently as A0shell, allows the 
machine operator to minimize the beam, bump the beam, and also offers a few informational functions 
such as calculating a transport matrix between any two given points. 
 The program was designed using the object-oriented paradigm extensively. Each beamline 
element, such as a BPM, dipole, quadrupole, or drift, is represented in the program as an object. These 
elements are placed in an array in another object, a Beamline, which is basically a wrapper class around 
this array with a variety of utility functions. This simplifies adding additional features to the program in 
the future, if necessary, and also makes the program very generic, and thus, portable to other linear 
accelerators. 
 The minimization itself is performed in a “black box” library function, from the Root library. 
This function performs a kind of simplex minimization to determine trim currents, which are then given 
to DOOCS, which in turn sets the currents of the trim magnets. Because pure mathematics does not 
give exact answers to real-life problems, multiple iterations of this function must be performed to get 
adequate results from the program. 
 Bumping, however, has a more naive and purely mathematical approach to tackling its problem. 
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The formulas are used directly in the program to determine currents, which are given to DOOCS. This 
approach, however, does generate good results in the photoinjector. 
 

IV. Data 
 

1. Minimization 
The following two graphs show the beam offset from “perfect” (BPM readout=0), from the 
initial conditions to the fifth iteration. 
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 The next two graphs are identical to the two above, but omit the initial conditions and the first 
iteration, to show more detail. 
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2. 4 Bump 
  The following two graphs show the initial conditions before a four bump (of x=1 at 
z=4.654), the conditions following the four bump, and the conditions after a “return” bump (a four 
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bump in the opposite direction as the first). The first and third graphs, ideally, should be identical. 

 
V. Conclusions 

 The minimization data, shown above, shows definite convergence toward zero, which is the 
desired outcome. A0shell is capable of steering a beam toward the center of the BPMs with little error, 
although beam jitter causes the readouts to thrash around a bit with more iterations, especially far 
downstream. A0shell does detect when it has converged (when the readouts are all within the BPMs' 
resolutions) and ceases accordingly. 
 Problematic, however, is the black box minimization function's inflexibility in certain areas. For 
instance, it is not possible to give it an upper limit to the corrections it gives, and thus, if a trim dipole 
is very close to a BPM, it may direct the magnet to use a current higher than it is designed to use. The 
program prevents the current from actually reaching the dipole, but nonetheless, this would interfere 
with minimization. 
 In addition, the program does not know where the beam pipe lies. It is possible for the function 
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to send the beam into the actual vacuum pipe unknowingly, though this is naturally more of a problem 
with bumps than with minimization. 
 Regarding the bump, the four bump performs as one would hope. There is a slight (0.8 mm) 
divergence downstream of the bump, but the return bump is within 0.2 mm of the initial conditions. 
The second can be accounted for by beam jitter, and the first by inaccuracies in the configuration file. 


