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Abstract 
  

The following paper introduces the quad scan mathematically, presents MATLAB 
codes to relate three different beam formalisms and generate data for a simulated quad 
scan run in the Argonne Wakefield Accelerator.  By developing a fitting routine, the 
simulated data can be analyzed to return the initial beam conditions, including emittance. 
 

Introduction 
  

The beam emittance is a measure of both beam size ( ) and beam divergence 
( ).    Because beam divergence cannot be measured explicitly, the quad scanning 
technique can be used.  By varying the strength of a quadrupole magnet, the focusing 
conditions are altered and the data obtained from the measurement of the spot sizes under 
the different conditions can be used to extrapolate the emittance from the envelope 
equations, the sigma beam parameters, and the Twiss parameters.  Quad scan software 
developed for this paper will; verify the interchangeability of the three formalisms, 
generate data for a simulated quad scan, and analyze data generated in both MATLAB 
and Parmela to determine beam emittance.   
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Theoretical Background 

 
Figure 1: The Phase Ellipse 

 

  
The three beam parameters under consideration are all related by the phase space 

ellipse.  The phase ellipse is a convenient way to model the behavior of the beam position 
and momentum.  A number of useful identities can be derived from the phase ellipse 



which will be used to show the mathematical interchangeability of the three formalisms 
under consideration.  These identities are shown below.   
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Section 1: Envelope Formalism 

 
Envelope formalism relates the spot size at the screen to; the size of the spot prior 

to entering the quadrupole, the emittance, and the derivative of the initial spot sizes as 
they will change with respect to the focal length.  They are described by a second order 
differential equation.  It should be noted that this equation explicitly ignores space charge 
effects. 
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This can be solved analytically to retrieve the following equation; 
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Section 2: Twiss Parameter Formalism 
 

 The Twiss parameters are coefficients describing the shape of the ellipse in phase 
space (Fig 1).  The Twiss parameters (β,α,γ) are mathematically linked to the beam 
envelope parameters (Ro, Ro’,ε) .  In the Twiss parameters, γ is dependent on both β and 
α which will simplify future substitutions. The beam emittance, ε is the same in both the 
parameters under consideration.  The equation of the ellipse in terms of the Twiss 
parameters is given below. 
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By applying the 2x2 transformation matrix (Wiedemann 159) to the matrix 
elements of the thin converging quadrupole and the drift, we can create a new 3x3 
composite matrices which will allow us to calculate the Twiss parameters at the end of 
our quad scan.   
  
 The transport matrices for the quad and the drift are associated with the Twiss 
transformation matrix by the identities shown in equations 3 and 4 below. 
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 By substituting elements with the 3x3 Twiss indentity matrix (6), the 2x2 transport 
matrices can be transformed into the 3x3 Twiss matrix for the thin lens approximation for 
the quadrupole and the 3x3 Twiss matrix for the drift.  
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The result of substituting the quadrupole transport matrix (4) into the Twiss transport 
matrix (6) for the quadrupole is shown below. 
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The result of substituting the drift transport matrix (5) into the Twiss transport matrix (6) 
for the drift is shown below. 
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Equation (9) describes the transformation of the ellipse or Twiss parameters through the 
quadrupole and the drift.  Since matrix multiplication is not commutative, the quad and 
drift transport matrices must be ordered as they appear in equation (9).  This indicates 
that the beam line is passing through the quadrupole first and then the drift. 
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The 3x1 matrix (10) is the result of performing matrix multiplication.  In the following 
steps, the phase ellipse identities will be useful in constructing the equation for the beam 
envelope from the Twiss parameters. 
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The envelope of the beam creates an incident spot size on the phosphor screen which is 
described by the equation (11) (Wiedemann 169).   
 

)(zRs βε=          (11) 
 
By squaring both sides of the expression and replacing )(zβ with the first element of the 
3x1 matrix (10) the phase ellipse identities can be substituted in and the new equation is 
identical to the equation for the beam envelope (2).  
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Section 3: Beam Sigma Formalism 

 
The quad scan technique requires the beam to be transported through a 

quadrupole and a drift before it hits a phosphor screen.  It is convenient to calculate the 
composite transport matrix (15) of the beam passing through the quadrupole structure 
(thin lens approximation) and the drift when developing beam sigma formalism.   
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Beam sigma formalism is the most flexible of the three beam formalisms.  The 
flexibility of this formalism comes from considering the beam to be an n-dimensional 
phase ellipse.  Adapting this formalism to compute spot size in three dimensions is 
possible.  For the purpose of this paper, the sigma matrix will only be developed in one 
dimension.  The matrices (16), (17), and (18) are the composite transport matrix, its 
transpose, and the 1D sigma matrix, respectively. 
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Only three of the four parameters are independent in matrix (18), therefore 2112 σσ = is a 
useful identity to simplify the matrix multiplication (Wiedemann 162).  The equation 
below shows how the sigma beam matrix transforms in the quadrupole and the drift. 
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From the resulting matrix we are interested in the 11,2σ  term.  We substitute the identities 
in (20) into the 11,2σ  term (Wiedemann 163). 
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By algebraically expanding 11,2σ , equation (21) is developed in terms of the Twiss 
parameters. 
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This is the equivalent of equation (14) which relates the Twiss formalism to the equation 
for the beam envelope. 
 

Developing a MATLAB Routine 
 

Section 1: Numerical Comparison of Beam Formalisms 
 

   The code provided in “Appendix A” shows the three different formalisms 
developed in sections 1-3 computing the same answer for spot size given initial 
conditions. The results of the arbitrary parameters given in the code generate a spot size 
of .0022m.   

 
Section 2: Returning Initial Conditions 

 
Computing the initial beam conditions prior to going through the quadrupole 

magnet and the drift requires manipulating the matrices describing the motion of the 
beam according to equation (22) (Wiedemann 165). 
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The MATLAB code which implements this equation is presented in “Appendix B”.   
The code requires another m-file (also in “Appendix B”) to generate the data to be 
analyzed by equation (22).  From these programs, initial conditions for alpha, beta, and 
epsilon are returned.  The values in the case of the example are -.1, .8, and 1e-5 
respectively.   

Using the MATLAB random number generator, a more realistic model of the data 
can be obtained.  The code for generating data with ‘noise’ is identical to the m-file used 
in returning the ideal values with the exception that it includes a random number 
(Gaussian) multiplied by the computation for the spot size at the end of the ‘for’ loop.  
This change is annotated in “Appendix B”. 

The data generated with ‘noise’ is accessed by the script given in “Appendix C” 
which implements equation (23) (Wiedemann 165) and uses the ‘fminsearch’ function in 
MATLAB to create a best fit line to the generated data.   
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The best fit line is plotted on the graph of the generated data and is presented in Graph 1.  
The estimate of the initial beam conditions are presented in Table 1. 
 
 

 
Graph 1 
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The lowest point on the graph indicates the beam waist.  In terms of the phase 
ellipse, the beam waist is the smallest possible spot size given the focusing conditions 
and drift length.  As the spot size gets smaller approaching the beam waist and the phase 
ellipse is said to be converging (Wiedemann 160).  As the spot size increases at longer 
focal lengths, the beam is said to be diverging.  For the purposes of this paper, we are 
most concerned with the narrow band of focal lengths that create a parabola around the 
beam waist. 
 When the lattice of focusing elements is set up to produce a waist, beam-beam 
effects are minimized and luminosity is maximized which is of importance in collision 
experiments and FEL’s.   
 
 

 
 
 
 



Section 3: Changing the initial conditions for drift length 
 

 By changing the length of the drift tube, a broad or narrow beam waist can be 
produced depending on the effect desired.  In Graph 2, a narrow beam waist can be 
produced by shortening the drift which results in higher luminosity.  In Graph 2 the beam 
waist is approximately .9mm.  If the length of the drift is increased, the beam waist will 
be broader.  In the case of Graph 3, the waist will be approximately 2.5mm.  In the 
MATLAB model developed for this paper, changing the drift length impacts the accuracy 
of calculated initial conditions (Table 1).  
 

Graph 2 
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Graph 3 
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Table 1 shows the values of the parameters returned by the MATLAB code and the 
percent difference in calculated emittance at three different drift lengths.  The emittance 
is calculated according to equation (24) (Wiedemann 163), shown below.   Figure 2 
shows a graphical representation of the screen at different positions downstream from the 
quadrupole. 
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Figure 2:  Positioning the screen at different drift lengths. 
 

 
 

 
Table 1 

 
Initial values: Ideal Data 

emittance = 1.000000e-005, alpha = -1.000000e-001, and beta= 8.000000e-001 
 

Drift Length in 
meters 

Emittance Alpha Beta % Difference in 
Emittance 

.25 1.005824e-005 -8.754183e-002 8.016145e-001 
 

.5824% 

.50 1.000668e-005 -9.981304e-002 8.067167e-001 .0668% 

.75 9.936803e-006 -8.581043e-002 7.905808e-001 .63197% 

  

Most accurate emittance from 
MATLAB generated data. 

Detector Screen 

.50m .75m .25m 

Quadrupole 



The initial conditions retrieved from the data generated with ‘noise’ are less than 
1% different from those retrieved from the ideal data.  The best drift length for our model 
is around .5 meters.   
 

Section 3: Parmela Data 
 
 Parmela generated data is an industry standard in accelerator physics modeling.  
The data generated by Parmela and analyzed using the MATLAB code from “Appendix 
B” is presented in Graph 3.  The emittance calculated by the MATLAB script is 
displayed along with the emittance used by Parmela in generating the data.  The percent 
difference between the expected emittance and the emittance calculated by the MATLAB 
code is 12960%.   
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Results 
 
 The MATLAB code accurately analyzes beam data from code generated in 
MATLAB, but performs poorly when analyzing data generated in Parmela.  This occurs 
for several reasons.  The MATLAB model was developed without space charge and uses 
the thin lens approximation for the transport matrix through a quadrupole magnet.  
Parmela includes space charge and a more accurate transport matrix through the focusing 
element which accounts for the length of the device.  The failure of the MATLAB code 



to accurately predict Parmela data disqualifies the code from being used to perform a 
quad scan in the Argonne Wakefield Accelerator in its present form. 
  

Conclusion 
 

 The beam parameters in an accelerator can be determined by comparing the 
incident spot size on a YAG screen with the focusing conditions of the quadrupole 
magnet which produced the spot.  This technique can be mathematically verified in the 
thin lens approximation using Twiss formalism, envelope formalism, and beam sigma 
formalism.  A code was developed in MATLAB to model the behavior of a particle beam 
under different focusing condtions.  Conditions can be varied within the code in order to 
study the effect of different parameters on various beam properties such as beam waist. 
Our MATLAB model calculated input conditions which were numerically accurate to 
within 1% of those used in the theoretical model using the three different formalisms.    
 Failure of the MATLAB code to accurately analyze data from Parmela should not 
preclude future development of this technique.  MATLAB code incorporating the 
realistic quadrupole transport matrix and space charge would improve the accuracy of the 
model and possibly make it suitable for determining beam emittance in a particle 
accelerator. 
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Appendix A 

 
Numerically compare three different beam formalisms in MATLAB 
 
%define initial beam 
alpha0=0; 
beta0=.8; 
gamma0=(1+alpha0^2)/beta0; 
epsillon=1e-5; 
   
%define beamline matricies 
f=.9; 
L=.5; 
MD1=[1 L;0 1]; 
MQ1=[1 0;-1/f 1]; 
%M=MD1*MD2*MQ1*MD3*MQ2 
% 
% 
%envelope formalism {R0, ROprime, epsillon} 
R0=sqrt(epsillon*beta0); 
Rprime0=-alpha0*sqrt(epsillon/beta0); 
R_screen_envelope=sqrt(... 
    (R0^2) + ... 
    (2*R0)*(Rprime0-R0./f)*L + ... 
    ( (epsillon/R0)^2 + (Rprime0-R0./f).^2 ) * L^2) 
% 
%Twiss parameters formalism (alpha, beta, epsillon} 
MD=[1 -2*L L^2; 0 1 -L; 0 0 1]; 
MQ=[1 0 0;1/f 1 0;1/f^2 2/f 1]; 
Twiss0=[beta0;alpha0;gamma0]; 
Twiss=MD*MQ*Twiss0; 
beta_final=Twiss(1); 
Rssquared=epsillon*beta_final; 
R_screen_twiss=sqrt(Rssquared) 
% 
%Sigma matrix formalism. { sigma(1,1), sigma(1,2), sigma(2,2) } 
MDsig=[1 L;0 1]; 
MQsig=[1 0;-1/f 1]; 
M=MDsig*MQsig; 
sig11=epsillon*beta0; 
sig22=epsillon*gamma0; 
sig12=-epsillon*alpha0; 
Sig=[sig11 sig12;sig12 sig22]; 
SigFinal=M*Sig*M'; 
R_screen_matrix=sqrt(SigFinal(1,1)) 
% 
 
 
 
 

 
 



Appendix B 
 
Retrieving initial conditions from generated data. 
 
%Inverting the Matrix to Recover Initial Conditions 
clear 
L=.5; 
MquadScan=dlmread(‘quadScanData.txt’); 
fquad=MquadScan(:,1); 
sigma11Screen=MquadScan(:,2).^2; 
Msigma=[]; 
 for iquad=1:length(fquad) 
     f=fquad(iquad); 
     C=1-L/f; 
     S=L; 
     Msigma=[Msigma; C^2 2*C*S S^2]; 
 end 
 Msigma; 
 sigma11Screen; 
 MsigN=inv(Msigma’*Msigma)*Msigma’; 
 sigma0=MsigN*sigma11Screen; 
  
 sigma11=sigma0(1); 
 sigma12=sigma0(2); 
 sigma22=sigma0(3); 
  
 epsillon=sqrt(sigma11*sigma22-sigma12^2); 
 beta0=sigma11/epsillon; 
 alpha0=-sigma12/epsillon; 
  
 fprintf(‘Retrieved values: epsillon=%d, alpha=%d, beta=%d\n\n’,… 

epsillon, alpha0, beta0) 
 
 (generateData.m) 
 
%define initial beam 
clear 
alpha0=-0.1; 
beta0=.8; 
gamma0=(1+alpha0^2)/beta0; 
epsillon=1e-5; 
  
  
%define beamline matricies 
fquad=[0.2:0.01:1.2]; 
L=0.5; 
  
  
%Sigma matrix formalism. { sigma(1,1), sigma(1,2), sigma(2,2) } 
  
for iquad=1:length(fquad) 

f=fquad(iquad); 
Mdsig=[1 L;0 1]; 



Mqsig=[1 0;-1/f 1]; %[C1 S1; C1’ S1’] 
M=Mdsig*Mqsig; 
sig11=epsillon*beta0; 
sig22=epsillon*gamma0; 
sig12=-epsillon*alpha0; 
Sig=[sig11 sig12;sig12 sig22]; 
SigFinal=M*Sig*M’; 
R_screen_matrix(iquad)=sqrt(SigFinal(1,1)); (Generating Data with 

noise includes multiplication by a random (Guassian) number at this 
step.) 
end 
% 
  
%plot data point 
plot(fquad, 1e3*R_screen_matrix,’+’) 
  
MquadScan=[fquad’,R_screen_matrix’]; 
dlmwrite(‘quadScanData.txt’, MquadScan); 
  
fprintf(‘Initial values: epsillon=%d, alpha=%d, beta=%d\n\n’,… 

epsillon, alpha0, beta0) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



Appendix C 
 
This MATLAB code analyzes data with noise in order to return initial conditions and 
perform a data fit using equation (23) from section 4. 
 
clear 
  
%generate data for line 
quadScandata =dlmread(‘quadScanData.txt’);  %col1=f; col2=spot size 
f_xdata = quadScandata(:,1); 
spotSizescreen_ydata=quadScandata(:,2); 
L=.5; 
plot(f_xdata,spotSizescreen_ydata, ‘^’); hold on 
  
  
%find the best fit to equation 548 Wiedermann 
alpha0=-0.2; beta0=.7; gamma0=(1+alpha0^2)/beta0; epsillon=2e-5; 
paramsin0=[epsillon*beta0; -epsillon*alpha0; epsillon*gamma0;]; 
%paramsin0=[8e-6, 1.2625e-5, 1e-6]; 
options=optimset(‘TolX’,1e-8); 
sseHWn = @(x) sseHW(x, L, f_xdata, spotSizescreen_ydata); 
paramsout = fminsearch(sseHWn,paramsin0,options); 
% alpha0=-0.1; beta0=.8; gamma0=(1+alpha0^2)/beta0; epsillon=1e-5; 
% paramsout=[epsillon*beta0; -epsillon*alpha0; epsillon*gamma0;] 
  
%extract data 
sigma011=paramsout(1); 
sigma012=paramsout(2); 
sigma022=paramsout(3); 
  
  
%generate model fit 
for iquad=1:length(f_xdata) 

f=f_xdata(iquad); 
C=1-L/f; S=L; 
sigma11screen=… 

        C^2*sigma011 + 2*C*S*sigma012 + S^2*sigma022  ;
spotSizeScreen_model(iquad)=sqrt(sigma11screen); 

end 
plot(f_xdata,spotSizeScreen_model,’r’,’LineWidth’,4); hold off 
  
epsillon0jp=sqrt(sigma011*sigma022-sigma012^2); 
beta0jp=sigma011/epsillon0jp; 
alpha0jp=-sigma012/epsillon0jp; 
  
fprintf(‘Retrieved values: epsillon=%d, alpha=%d, beta=%d\n\n’,… 

epsillon0jp, alpha0jp, beta0jp) 
  
% plot results 
% plot(f_xdata, sigma11scdata, ‘^’,f_xdata,sigma111,’-‘) 
% legend(‘data’, ‘model’) 
% mstring = [‘best fit m = ‘, num2str(m), ‘ b = ‘, num2str(b)] 
% text(1, 20, mstring) 



  
(sseHW.m) 
 
function sumsq = sseHW(paramsin, L, f_xdata, spotSizescreen_ydata)    
%eqn 5.48 
% 
sigma011=paramsin(1); 
sigma012=paramsin(2); 
sigma022=paramsin(3); 
  
for iquad=1:length(f_xdata) 

f=f_xdata(iquad); 
C=1-L/f; S=L; 
sigma11screen=… 

        C^2*sigma011 + 2*C*S*sigma012 + S^2*sigma022; 
spotSizeScreen_model(iquad)=sqrt(sigma11screen); 

end 
%plot(f_xdata,spotSizeScreen_model) 
sumsq= sum((spotSizeScreen_model’-spotSizescreen_ydata).^2); 


