
Development of Quad Scan Software

Adam Clark, Rockhurst University, Department of Physics
John Power, ANL, Argonne Wakefield Accelerator Group

Abstract

The following paper introduces the quad scan mathematically, presents MATLAB
codes to relate three different beam formalisms and generate data for a simulated quad
scan run in the Argonne Wakefield Accelerator. By developing a fitting routine, the
simulated data can be analyzed to return the initial beam conditions, including emittance.

Introduction

The beam emittance is a measure of both beam size () and beam divergence
(). Because beam divergence cannot be measured explicitly, the quad scanning
technique can be used. By varying the strength of a quadrupole magnet, the focusing
conditions are altered and the data obtained from the measurement of the spot sizes under
the different conditions can be used to extrapolate the emittance from the envelope
equations, the sigma beam parameters, and the Twiss parameters. Quad scan software
developed for this paper will; verify the interchangeability of the three formalisms,
generate data for a simulated quad scan, and analyze data generated in both MATLAB
and Parmela to determine beam emittance.

mm
mrad

Theoretical Background

Figure 1: The Phase Ellipse

The three beam parameters under consideration are all related by the phase space

ellipse. The phase ellipse is a convenient way to model the behavior of the beam position
and momentum. A number of useful identities can be derived from the phase ellipse

which will be used to show the mathematical interchangeability of the three formalisms
under consideration. These identities are shown below.

εα
β
αγ

ε
β

β
εα

εβ

εβ

−=

+
=

=

−=

=

=

'
00

2

2
0

'
0

2
0

0

1

RR

R

R

R

R

Section 1: Envelope Formalism

Envelope formalism relates the spot size at the screen to; the size of the spot prior

to entering the quadrupole, the emittance, and the derivative of the initial spot sizes as
they will change with respect to the focal length. They are described by a second order
differential equation. It should be noted that this equation explicitly ignores space charge
effects.

3

2
''

R
R ε

= (1)

This can be solved analytically to retrieve the following equation;

220'
02

0

2
0'

00
2
0

2))(()(2 L
f

R
R

R
L

f
R

RRRRs −++−+=
ε (2)

Section 2: Twiss Parameter Formalism

 The Twiss parameters are coefficients describing the shape of the ellipse in phase
space (Fig 1). The Twiss parameters (β,α,γ) are mathematically linked to the beam
envelope parameters (Ro, Ro’,ε) . In the Twiss parameters, γ is dependent on both β and
α which will simplify future substitutions. The beam emittance, ε is the same in both the
parameters under consideration. The equation of the ellipse in terms of the Twiss
parameters is given below.

22 ''2 xxxx βαγε ++= (3)

By applying the 2x2 transformation matrix (Wiedemann 159) to the matrix
elements of the thin converging quadrupole and the drift, we can create a new 3x3
composite matrices which will allow us to calculate the Twiss parameters at the end of
our quad scan.

 The transport matrices for the quad and the drift are associated with the Twiss
transformation matrix by the identities shown in equations 3 and 4 below.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ''1/1

01
SC
SC

f (4)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
''10

1
SC
SCL

 (5)

 By substituting elements with the 3x3 Twiss indentity matrix (6), the 2x2 transport
matrices can be transformed into the 3x3 Twiss matrix for the thin lens approximation for
the quadrupole and the 3x3 Twiss matrix for the drift.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−+−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0

0

0

22

22

'''2'
''''

2

)(
)(
)(

γ
α
β

γ
α
β

SSCC
SSSCCSCC

SCSC

z
z
z

 (6)

The result of substituting the quadrupole transport matrix (4) into the Twiss transport
matrix (6) for the quadrupole is shown below.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1/2/1
01/1
001

2 ff
f (7)

The result of substituting the drift transport matrix (5) into the Twiss transport matrix (6)
for the drift is shown below.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

100
10
21 2

L
LL

 (8)

Equation (9) describes the transformation of the ellipse or Twiss parameters through the
quadrupole and the drift. Since matrix multiplication is not commutative, the quad and
drift transport matrices must be ordered as they appear in equation (9). This indicates
that the beam line is passing through the quadrupole first and then the drift.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0

0

0

2

2

1/2/1
01/1
001

100
10
21

)(
)(
)(

γ
α
β

γ
α
β

ff
fL

LL

z
z
z

 (9)

The 3x1 matrix (10) is the result of performing matrix multiplication. In the following
steps, the phase ellipse identities will be useful in constructing the equation for the beam
envelope from the Twiss parameters.

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

++−++

++++−+

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0

2
0

0
0

2
0

0
0

0
0

2
02

0
0

0

2

)
2

)((

)
2

())(2(

)(
)(
)(

γ
αβ

γ
αβ

α
β

γ
αβ

α
β

β

γ
α
β

ff

ff
L

f

ff
L

f
L

z
z
z

 (10)

The envelope of the beam creates an incident spot size on the phosphor screen which is
described by the equation (11) (Wiedemann 169).

)(zRs βε= (11)

By squaring both sides of the expression and replacing)(zβ with the first element of the
3x1 matrix (10) the phase ellipse identities can be substituted in and the new equation is
identical to the equation for the beam envelope (2).

220'
02

0

2
0'

00
2
0

2

2'
02

0

'
00

2

2
02'

00

2
02

0
2

0

2
00

2
02

0
0

0
2

))(()(2

)
)(

2
()(2

)
2

()(2)(

L
f

R
R

R
L

f
R

RRRR

R
Rf

RR
f
R

LRR
f
R

LRR

ff
L

f
LzR

s

s

s

−++−+=

++−++
−

+=

+
+++−

−
+==

ε
ε

ε

β
εαεεαεβ

εα
εβ

εβεβ

 (14)

Section 3: Beam Sigma Formalism

The quad scan technique requires the beam to be transported through a

quadrupole and a drift before it hits a phosphor screen. It is convenient to calculate the
composite transport matrix (15) of the beam passing through the quadrupole structure
(thin lens approximation) and the drift when developing beam sigma formalism.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1/1

/1
1/1
01

10
1

f
LfL

f
L

 (15)

Beam sigma formalism is the most flexible of the three beam formalisms. The
flexibility of this formalism comes from considering the beam to be an n-dimensional
phase ellipse. Adapting this formalism to compute spot size in three dimensions is
possible. For the purpose of this paper, the sigma matrix will only be developed in one
dimension. The matrices (16), (17), and (18) are the composite transport matrix, its
transpose, and the 1D sigma matrix, respectively.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
1/1

/1
f

LfL
M (16)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

1
/1/1

L
ffL

M T (17)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2221

1211
0 σσ

σσ
σ (18)

Only three of the four parameters are independent in matrix (18), therefore 2112 σσ = is a
useful identity to simplify the matrix multiplication (Wiedemann 162). The equation
below shows how the sigma beam matrix transforms in the quadrupole and the drift.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−+−+−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

=

22,221,2

12,2221212
2

11

2212

1211

02

))/1(()/1()/1(

1
/1/1

1/1
/1

σσ
σσσσσ

σσ
σσ

σσ

LLfLfLLfL

L
ffL

f
LfL

MM T

 (19)

From the resulting matrix we are interested in the 11,2σ term. We substitute the identities
in (20) into the 11,2σ term (Wiedemann 163).

εασ
εγσ
εβσ

−=
=
=

12

22

11

 (20)

By algebraically expanding 11,2σ , equation (21) is developed in terms of the Twiss
parameters.

)
2

()(2
0

2
00

2
02

0
0

011,2
2

β
εαεεαεβ

εα
εβ

εβσ
+

+++−
−

+==
ff

L
f

LRs (21)

This is the equivalent of equation (14) which relates the Twiss formalism to the equation
for the beam envelope.

Developing a MATLAB Routine

Section 1: Numerical Comparison of Beam Formalisms

 The code provided in “Appendix A” shows the three different formalisms
developed in sections 1-3 computing the same answer for spot size given initial
conditions. The results of the arbitrary parameters given in the code generate a spot size
of .0022m.

Section 2: Returning Initial Conditions

Computing the initial beam conditions prior to going through the quadrupole

magnet and the drift requires manipulating the matrices describing the motion of the
beam according to equation (22) (Wiedemann 165).

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

...

)(
11,3

11,2

11,1

,
1

,,

22,0

12,0

11,0

σ
σ
σ

σ
σ
σ

σσσ
T

nn
T

n MMM (22)

The MATLAB code which implements this equation is presented in “Appendix B”.
The code requires another m-file (also in “Appendix B”) to generate the data to be
analyzed by equation (22). From these programs, initial conditions for alpha, beta, and
epsilon are returned. The values in the case of the example are -.1, .8, and 1e-5
respectively.

Using the MATLAB random number generator, a more realistic model of the data
can be obtained. The code for generating data with ‘noise’ is identical to the m-file used
in returning the ideal values with the exception that it includes a random number
(Gaussian) multiplied by the computation for the spot size at the end of the ‘for’ loop.
This change is annotated in “Appendix B”.

The data generated with ‘noise’ is accessed by the script given in “Appendix C”
which implements equation (23) (Wiedemann 165) and uses the ‘fminsearch’ function in
MATLAB to create a best fit line to the generated data.

22,0
2

12,011,0
2

11,1)()()(2)()(σσσσ kSkSkCkCk ++= (23)

The best fit line is plotted on the graph of the generated data and is presented in Graph 1.
The estimate of the initial beam conditions are presented in Table 1.

Graph 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.5

2

2.5

3

3.5

4

4.5

5
x 10-3

f (focal length in meters)

S
po

t S
iz

e
in

 M
et

er
s

Spot Size Vs. Focal Length

The lowest point on the graph indicates the beam waist. In terms of the phase
ellipse, the beam waist is the smallest possible spot size given the focusing conditions
and drift length. As the spot size gets smaller approaching the beam waist and the phase
ellipse is said to be converging (Wiedemann 160). As the spot size increases at longer
focal lengths, the beam is said to be diverging. For the purposes of this paper, we are
most concerned with the narrow band of focal lengths that create a parabola around the
beam waist.
 When the lattice of focusing elements is set up to produce a waist, beam-beam
effects are minimized and luminosity is maximized which is of importance in collision
experiments and FEL’s.

Section 3: Changing the initial conditions for drift length

 By changing the length of the drift tube, a broad or narrow beam waist can be
produced depending on the effect desired. In Graph 2, a narrow beam waist can be
produced by shortening the drift which results in higher luminosity. In Graph 2 the beam
waist is approximately .9mm. If the length of the drift is increased, the beam waist will
be broader. In the case of Graph 3, the waist will be approximately 2.5mm. In the
MATLAB model developed for this paper, changing the drift length impacts the accuracy
of calculated initial conditions (Table 1).

Graph 2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10-3

f (focal length in meters)

S
po

t s
iz

e
on

 th
e

sc
re

en
 (i

n
m

et
er

s)

Length of Drift= .25m

Graph 3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
2

3

4

5

6

7

8

9

10
x 10-3

f (focal length in meters)

S
po

t s
iz

e
on

 th
e

sc
re

en
 (i

n
m

et
er

s)
Drift Length= .75m

Table 1 shows the values of the parameters returned by the MATLAB code and the
percent difference in calculated emittance at three different drift lengths. The emittance
is calculated according to equation (24) (Wiedemann 163), shown below. Figure 2
shows a graphical representation of the screen at different positions downstream from the
quadrupole.

2
122211 σσσε −= (24)

Figure 2: Positioning the screen at different drift lengths.

Table 1

Initial values: Ideal Data

emittance = 1.000000e-005, alpha = -1.000000e-001, and beta= 8.000000e-001

Drift Length in
meters

Emittance Alpha Beta % Difference in
Emittance

.25 1.005824e-005 -8.754183e-002 8.016145e-001

.5824%

.50 1.000668e-005 -9.981304e-002 8.067167e-001 .0668%

.75 9.936803e-006 -8.581043e-002 7.905808e-001 .63197%

Most accurate emittance from
MATLAB generated data.

Detector Screen

.50m .75m .25m

Quadrupole

The initial conditions retrieved from the data generated with ‘noise’ are less than
1% different from those retrieved from the ideal data. The best drift length for our model
is around .5 meters.

Section 3: Parmela Data

 Parmela generated data is an industry standard in accelerator physics modeling.
The data generated by Parmela and analyzed using the MATLAB code from “Appendix
B” is presented in Graph 3. The emittance calculated by the MATLAB script is
displayed along with the emittance used by Parmela in generating the data. The percent
difference between the expected emittance and the emittance calculated by the MATLAB
code is 12960%.

-2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7
0

1

2

3

4

5

6

7
x 10-3

Focal Strength (in meters)

S
po

t S
iz

e
(in

 m
et

er
s)

true emittance = 0.344 fit emittance = 44.9295

data
model

Results

 The MATLAB code accurately analyzes beam data from code generated in
MATLAB, but performs poorly when analyzing data generated in Parmela. This occurs
for several reasons. The MATLAB model was developed without space charge and uses
the thin lens approximation for the transport matrix through a quadrupole magnet.
Parmela includes space charge and a more accurate transport matrix through the focusing
element which accounts for the length of the device. The failure of the MATLAB code

to accurately predict Parmela data disqualifies the code from being used to perform a
quad scan in the Argonne Wakefield Accelerator in its present form.

Conclusion

 The beam parameters in an accelerator can be determined by comparing the
incident spot size on a YAG screen with the focusing conditions of the quadrupole
magnet which produced the spot. This technique can be mathematically verified in the
thin lens approximation using Twiss formalism, envelope formalism, and beam sigma
formalism. A code was developed in MATLAB to model the behavior of a particle beam
under different focusing condtions. Conditions can be varied within the code in order to
study the effect of different parameters on various beam properties such as beam waist.
Our MATLAB model calculated input conditions which were numerically accurate to
within 1% of those used in the theoretical model using the three different formalisms.
 Failure of the MATLAB code to accurately analyze data from Parmela should not
preclude future development of this technique. MATLAB code incorporating the
realistic quadrupole transport matrix and space charge would improve the accuracy of the
model and possibly make it suitable for determining beam emittance in a particle
accelerator.

Works Cited

H. Wiedemann. Particle Accelerator Physics 3ed. Springer Berlin Heidelberg New York
2007

K. Wille. The Physics of Particle Accelerators: an Introduction. Oxford University Press
Oxford, UK 2001.

Appendix A

Numerically compare three different beam formalisms in MATLAB

%define initial beam
alpha0=0;
beta0=.8;
gamma0=(1+alpha0^2)/beta0;
epsillon=1e-5;

%define beamline matricies
f=.9;
L=.5;
MD1=[1 L;0 1];
MQ1=[1 0;-1/f 1];
%M=MD1*MD2*MQ1*MD3*MQ2
%
%
%envelope formalism {R0, ROprime, epsillon}
R0=sqrt(epsillon*beta0);
Rprime0=-alpha0*sqrt(epsillon/beta0);
R_screen_envelope=sqrt(...
 (R0^2) + ...
 (2*R0)*(Rprime0-R0./f)*L + ...
 ((epsillon/R0)^2 + (Rprime0-R0./f).^2) * L^2)
%
%Twiss parameters formalism (alpha, beta, epsillon}
MD=[1 -2*L L^2; 0 1 -L; 0 0 1];
MQ=[1 0 0;1/f 1 0;1/f^2 2/f 1];
Twiss0=[beta0;alpha0;gamma0];
Twiss=MD*MQ*Twiss0;
beta_final=Twiss(1);
Rssquared=epsillon*beta_final;
R_screen_twiss=sqrt(Rssquared)
%
%Sigma matrix formalism. { sigma(1,1), sigma(1,2), sigma(2,2) }
MDsig=[1 L;0 1];
MQsig=[1 0;-1/f 1];
M=MDsig*MQsig;
sig11=epsillon*beta0;
sig22=epsillon*gamma0;
sig12=-epsillon*alpha0;
Sig=[sig11 sig12;sig12 sig22];
SigFinal=M*Sig*M';
R_screen_matrix=sqrt(SigFinal(1,1))
%

Appendix B

Retrieving initial conditions from generated data.

%Inverting the Matrix to Recover Initial Conditions
clear
L=.5;
MquadScan=dlmread(‘quadScanData.txt’);
fquad=MquadScan(:,1);
sigma11Screen=MquadScan(:,2).^2;
Msigma=[];
 for iquad=1:length(fquad)
 f=fquad(iquad);
 C=1-L/f;
 S=L;
 Msigma=[Msigma; C^2 2*C*S S^2];
 end
 Msigma;
 sigma11Screen;
 MsigN=inv(Msigma’*Msigma)*Msigma’;
 sigma0=MsigN*sigma11Screen;

 sigma11=sigma0(1);
 sigma12=sigma0(2);
 sigma22=sigma0(3);

 epsillon=sqrt(sigma11*sigma22-sigma12^2);
 beta0=sigma11/epsillon;
 alpha0=-sigma12/epsillon;

 fprintf(‘Retrieved values: epsillon=%d, alpha=%d, beta=%d\n\n’,…

epsillon, alpha0, beta0)

 (generateData.m)

%define initial beam
clear
alpha0=-0.1;
beta0=.8;
gamma0=(1+alpha0^2)/beta0;
epsillon=1e-5;

%define beamline matricies
fquad=[0.2:0.01:1.2];
L=0.5;

%Sigma matrix formalism. { sigma(1,1), sigma(1,2), sigma(2,2) }

for iquad=1:length(fquad)

f=fquad(iquad);
Mdsig=[1 L;0 1];

Mqsig=[1 0;-1/f 1]; %[C1 S1; C1’ S1’]
M=Mdsig*Mqsig;
sig11=epsillon*beta0;
sig22=epsillon*gamma0;
sig12=-epsillon*alpha0;
Sig=[sig11 sig12;sig12 sig22];
SigFinal=M*Sig*M’;
R_screen_matrix(iquad)=sqrt(SigFinal(1,1)); (Generating Data with

noise includes multiplication by a random (Guassian) number at this
step.)
end
%

%plot data point
plot(fquad, 1e3*R_screen_matrix,’+’)

MquadScan=[fquad’,R_screen_matrix’];
dlmwrite(‘quadScanData.txt’, MquadScan);

fprintf(‘Initial values: epsillon=%d, alpha=%d, beta=%d\n\n’,…

epsillon, alpha0, beta0)

Appendix C

This MATLAB code analyzes data with noise in order to return initial conditions and
perform a data fit using equation (23) from section 4.

clear

%generate data for line
quadScandata =dlmread(‘quadScanData.txt’); %col1=f; col2=spot size
f_xdata = quadScandata(:,1);
spotSizescreen_ydata=quadScandata(:,2);
L=.5;
plot(f_xdata,spotSizescreen_ydata, ‘^’); hold on

%find the best fit to equation 548 Wiedermann
alpha0=-0.2; beta0=.7; gamma0=(1+alpha0^2)/beta0; epsillon=2e-5;
paramsin0=[epsillon*beta0; -epsillon*alpha0; epsillon*gamma0;];
%paramsin0=[8e-6, 1.2625e-5, 1e-6];
options=optimset(‘TolX’,1e-8);
sseHWn = @(x) sseHW(x, L, f_xdata, spotSizescreen_ydata);
paramsout = fminsearch(sseHWn,paramsin0,options);
% alpha0=-0.1; beta0=.8; gamma0=(1+alpha0^2)/beta0; epsillon=1e-5;
% paramsout=[epsillon*beta0; -epsillon*alpha0; epsillon*gamma0;]

%extract data
sigma011=paramsout(1);
sigma012=paramsout(2);
sigma022=paramsout(3);

%generate model fit
for iquad=1:length(f_xdata)

f=f_xdata(iquad);
C=1-L/f; S=L;
sigma11screen=…

 C^2*sigma011 + 2*C*S*sigma012 + S^2*sigma022 ;
spotSizeScreen_model(iquad)=sqrt(sigma11screen);

end
plot(f_xdata,spotSizeScreen_model,’r’,’LineWidth’,4); hold off

epsillon0jp=sqrt(sigma011*sigma022-sigma012^2);
beta0jp=sigma011/epsillon0jp;
alpha0jp=-sigma012/epsillon0jp;

fprintf(‘Retrieved values: epsillon=%d, alpha=%d, beta=%d\n\n’,…

epsillon0jp, alpha0jp, beta0jp)

% plot results
% plot(f_xdata, sigma11scdata, ‘^’,f_xdata,sigma111,’-‘)
% legend(‘data’, ‘model’)
% mstring = [‘best fit m = ‘, num2str(m), ‘ b = ‘, num2str(b)]
% text(1, 20, mstring)

(sseHW.m)

function sumsq = sseHW(paramsin, L, f_xdata, spotSizescreen_ydata)
%eqn 5.48
%
sigma011=paramsin(1);
sigma012=paramsin(2);
sigma022=paramsin(3);

for iquad=1:length(f_xdata)

f=f_xdata(iquad);
C=1-L/f; S=L;
sigma11screen=…

 C^2*sigma011 + 2*C*S*sigma012 + S^2*sigma022;
spotSizeScreen_model(iquad)=sqrt(sigma11screen);

end
%plot(f_xdata,spotSizeScreen_model)
sumsq= sum((spotSizeScreen_model’-spotSizescreen_ydata).^2);

