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Free Electron Lasers (FEL's) generate some of the world’s most intense x-rays by passing a
relativistic electron beam through a device of alternating magnetic fields called an undulator. The
radiation from the FEL is highly collimated in the cone with aperture angle 1/y in the forward
direction. The electric field of this radiation is highly oscillatory and can be described with a
slowly varying envelope or amplitude function. Appropriate averaging of the electric field must
be done to remove the highly oscillatory portion and leave the envelope. The averaging is done

over the interval 2<% At <N.> which allows for the fast oscillations to be averaged away but is
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small enough that the slowly varying envelope can be considered constant and be retained. In

this paper I will determine this interval through rigorous analytical treatment to avoid the usual

Introduction

In this paper I will give a more rigorous derivation of the Free Electron Laser (FEL) equation,
given by eq. 1 below . This equation describes the electric field generated by relativistic
electrons traveling through an undulator by considering only a slowly varying amplitude. The
electric field is usually written as in equation 2 where it is thought of as a slowly varying
amplitude or envelope and a fast varying/highly oscillatory part. It is possible to solve for the
envelope function £z, £}, however the physics does not put the restriction that it will be slowly
varying and so appropriate averaging must be done. It is here in this paper where I will derive

the appropriate time interval At that the averaging must be done over.
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The electric field is considered to behave in a manner similar to figure 1 below, and from this
figure the idea of the slowly varying amplitude/envelope can be easily seen . The electric field
is a sum of the contributions from each electron, and it is from this superposition which
provides fig. 1. The equation for the electric field contains both a slowly varying portion, the
envelope, and the fast varying portion seen in the figure. By first removing the fast oscillations
and the averaging of an appropriate At the envelope can be considered constant during that
interval, leaving it unchanged by the averaging. This appropriate interval is determined in this
paper. In this paper I will first show the usual derivation of equation 1 and then show the

method with which the &t interval can be determined more rigorously. However let’s first

quickly go over some background for FEL’s.
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Figure 1: plot of the Electric Field E as a function of timel.



Free Electron Laser (FEL)

A free electron lasers are coherent and tunable radiation sources based on the radiation of
“free” electrons traveling in an accelerator, in comparison to common quantum lasers based on
electrons bound in atomic or molecular systems which have limited tunability. Free electron
lasers rely upon relativistic electrons traveling through magnetic structures called undulators
which consist of alternating magnetic fields, an example is shown below in figure 2. These
alternating magnetic fields force the electrons to oscillate in the transverse plane creating a
sinusoidal path through the undulator, due to the Lorentz force on the electrons from the
magnetic field and the acceleration of the electrons on this path causes the release of

synchrotron radiation.

Figure 2: FEL undulator assembly. The yellow represents the emitted radiation.

The synchrotron radiation emitted by the electrons has many useful and remarkable features.
Due to the dependence of the energy of the electrons on the wavelength of the radiation it is
possible to produce radiation from the microwave, and infrared, to the visible spectrum, to
ultraviolet, to X-ray wavelengths. Also, since the electron motion is in phase with the field of the
radiation already emitted, the fields add together (coherently)?. Another feature of FEL's is Self
Amplified Spontaneous Emission (SASE) which leads to the micro bunching of the electrons.
Initially all electrons are evenly distributed but through the interaction of the oscillating
electrons with the emitted radiation, the electrons drift into micro bunches separated by a
distance equal to one wavelength of the radiation. Through this arrangement, all the radiation
emitted can reinforce itself perfectly whereby wave crests and wave troughs are always
superimposed on one another in the best possible way. This is what leads to the high intensities

and the laser-like properties
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The radiation produced by Free Electron Lasers is used in many different fields ranging from
Chemistry, Biology, Pharmaceutical, Materials Science, and Physics. The high intensity and
small wavelength radiation together with the ability to produce bursts in the picoseconds range
make it perfect for studying a vast number of phenomena from crystal formation, cell and
protein structure, atomic processes and many medical applications as well. The military is also

looking into FEL’s in hopes of creating portable directed energy weapons.

There are many different FEL’s operating around the world such as the Jefferson Laboratory
Free Electron Laser, Vanderbilt Free Electron Laser Center, University of California Santa

Barbara Free Electron Laser, and Duke Free Electron Laser Laboratory as just a few examples.

The Usual Derivation

I start with equation 3 below, which is the 1-D inhomogeneous Electromagnetic wave equation
for the Electric field which can be derived easily from Maxwell’s equations. The right hand side

of equation 3 comes from the current density inside the FEL and by neglecting space charge.
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Next I Fourier transform from the time domain to the frequency domain which allows an easier
solution and will in the end provide needed information. Equation 5 below is the Fourier
Transform? of equation 3 and then using the Greens function solution method, and then the

solution to equation 5 is given by equation 6 *.
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The next step is to transform equation 6 from frequency space back to the time domain via the

inverse Fourier Transform. Once the transform is done we have E¥z, £}, the left hand side of

equation 2. I then solve for the envelope function in equation 2 yielding equation 7 below.
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From here I construct the set of differentials on the left hand side of equation 1, which I will

denote in short hand by &4 and plug in the Fourier transform of J, f'l'.z; ). This gives:
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The first line of equation 9 represents the really interesting part of the expression. This is
because in the FEL we are only concerned with the radiation in the forward direction. The
radiation emitted in the forward direction should be much greater in magnitude than that
emitted in the backward direction. We also only observe and use the forward emitted radiation,
so that is the only part of equation 9 that is especially interesting. The second two lines
represent left traveling waves; hence they are the backward radiation and will be neglected. We

are therefore left with:
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At this point we have an expression for what I have said is the envelope function of the electric
field from equation 2. However nothing in the physics or the derivation to this point forces the
electric field envelope H{z, £} to be slowly varying or even smooth. Now the task is to average
this expression appropriately to remove any fast oscillatory pieces and to make it smooth.
Because as was seen in figure 1, our envelope should vary slowly in time and be smooth. The
averaging that I shall do is referred to as a delta-slice average in time. The average is performed

for & with, <& At<¥N.’ , and at a constant value of z and by performing this averaging
c cC

which I show below, we are led to equation 12.
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This is the same as equation 1 above, the FEL equation for the slowly varying envelope of the
electric field. Some important features of this expression are the right hand side is smooth, as
opposed to equation 10 which contains delta functions. Equation 12 is dependent upon the
interval At and varies in a way that is consistent with the envelope seen in figure 1. Also, as we
see in equation 2 for the current density J, the sum is over all particles producing the radiation,
but now the sum is over only those particles that are in the delta-slice.



Determination of Averaging Interval

The size of the 4t is given above as P At <€Nu? and was determine simply by ‘physical’

arguments rather than found in a mathematically rigorous fashion. It is the goal of this section
to determine that interval directly and use it to obtain equation 12 above, so that we are left
with an expression that experiment has confirmed is very accurate but in a way that puts the
equation and its derivation on a more mathematical platform. To begin this section let’s start by
considering equation 6 and then construct a differential equation with the Fourier transform of

the differential D+ giving:
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The next step in this derivation is to use the sinc function defined below °. This function has the
property that it acts as a low pass filter, which means it filters out high frequencies leaving only
low frequencies behind. We want something like this because the high frequencies are what
give rise to the fast oscillations that we do not want and the lower frequencies help form the
slowly varying envelope that we do want. The sinc function is shown below in figure 2, for
values of x above ~20 the sinc function becomes very small (on the order of .05 or less) and

tends to zero at infinity.
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Figure 3: plot of sinc(x)



Instead of x however, we will use the choice of & = %*w , where i is the frequency and &t is the

same as above and what we are trying to place bounds on to do our averaging. Now multiply

both sides of equation 13 by the sinc function giving:
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Next I insert the value of the Fourier Transform of the current density and make the assumption

that g;m igl which is a “prescribed’ or ideal trajectory for an ideal electron passing through the
e

undulator. By ideal, I mean that it does not interact with the emitted radiation and follows a
perfect path through the undulator that is completely describable. This is done to simplify and
allow for analytical treatment. Since deviations off of the true/ideal trajectory are small and the
interval we are determining is not exact, meaning not an exact equality, then it will

approximately cover the non ideal cases too. After these three things we are left with:
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Where I have defined Efz, w) = BE’.ELEITHE m) D Bz e). Looking at equation 16 above, we can see

that the second term is by far the dominate term when ¢ = @, and with the substitution that
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Then ignoring the first term we can rewrite the second, to get:
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Next, Let
o =g and z=1

Where I have chosen z=L because while we are interested in what occurs inside the undulator,

our final measurable result occurs at the end of it at z=L. We are left with:
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And we will now also consider the sinc function centered around the same place as the rest of

the function, @, since everything is a function of w'. Now we make several further

simplifications, such as:

And we are then left with:
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Now, the first two terms inside the brackets only affect the phase of the sinc function and does
not affect the magnitude of the entire function. Therefore we have that the overall behavior is
that of the sinc function inside of the brackets. The goal now is to determine bounds on &
which we will do by considering the behavior of the sinc function and what type of information

we want to keep from this expression. Looking back at figure 2 we see that the sinc function has



some characteristic width that is inversely proportional to the constant multiplying ' (this in

. At . . e .
our case is ). Therefore decreasing At widens the filtering sinc function.

We want the characteristic width of the sinc function to be large enough to encompass the
interesting features of the electric field but small enough to filter out the high frequency carrier

oscillation =g, . The latter constraint implies that
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While the former constraint can be imposed by requiring the width of the filtering function to
be much greater than the characteristic width of the spontaneous radiation. From Equation 19,

we deduce that the spontaneous radiation has a bandwidth of order ﬁ. Requiring the filter
RS
width to encompass this frequency range implies that

Af @
Therefore by using the sinc function as a filter was are left with the appropriate averaging
interval given now by equation 20, over with we are able to find the slowly varying amplitude

electric field.
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Lastly I would like to look at how the use of the sinc function is a natural choice for this
problem besides its use as a low pass filter. We begin by considering equation 10 in a very

general form:
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Where in this case the right hand side of equation 21, Flz,03), represents the right hand side of

equation 6, so that
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Then if we apply the delta slice average to equation 21 we have basically equation 11:
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But this can be rewritten using step functions as,
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But now this is in the form of a convolution on both sides and if we represent the
convolution by * we have equation 22 looking like:
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And if we Fourier transform this equation, because of the properties of the transform we
will have the transform of each term multiplied instead of convoluted, leaving
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But the interesting piece is &) and so let’s look at it more closely.
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Which after Fourier transforming it leaves us with our choice of the sinc function, and
now puts equation 23 is in the same form as equation 15 with

e = sine (%m:l

alne (gm:l DBz, @) m ainc (?m] iz, )

Therefore our choice in using the sinc function that we did was a natural one since it is
equivalent to the delta slice in the time domain via the Fourier Transforms.
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