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Abstract

Standard rf cavities employ a sinusoidal wave to accelerate many bunches. The Recycler at

Fermilab has used a barrier bucket to contain one bunch. This requires a new look at the longitudinal

phase space and modifications to the normal method of reconstructing the two dimensional phase

space from one dimensional line shapes. Finally comparisons to predictions from the Vlasov equation

can assess the accuracy of each method.

Overview

Project Overview

The focus of this project was to analyze and reconstruct the longitudinal phase space in the Recycler
with its barrier bucket rf wave. To accomplish this, I first did some simple modeling of particles in a
regular sine wave and a barrier bucket to get a feel for how exactly they are different. This also allowed
me to look at how the tune varied in one versus the other. Next, I needed real data to run, so I took
line shapes of the Main Injector and the Recycler. Next, I worked through the CERN tomography code
and analyzed reconstructed the phase space of the Main Injector. Finally, I adjusted the code to work
with the Recycler. I also wrote some scripts for the Vlasov program to display the current phase space
as the bunch goes around the accelerator.

Tomography

It is not possible to directly measure the two dimensional longitudinal phase space of a beam, and so
line shapes of the same bunch(es) (see Figure 2) are taken which are then used to reconstruct the full
phase space. As time progresses, particles rotate in phase space. By taking one dimensional line shape
snapshots as they rotate as shown in the mountain range plot (Figure 1) it is possible to use these
to recreate the original phase space from the one dimensional projections. As a phase space model is
built up, it is then back projected to the original line shapes and compared. Iterating gives a good
approximation of the original phase space. In addition, particle tracking is employed. That is, a number
of particles are launched through the phase space and compared to the original line shapes. This hybrid
algorithm produces very accurate results.
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(a) The line shapes of a bunch in the Main Injector across

each trace in a mountain range plot.
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(b) Main Injector line shape for a different bunch with

more moments
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(c) The line shapes of a bunch in the Recycler across each trace in a mountain

range plot.

Figure 1: Line shapes in the Main Injector and Recycler.
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Parameter Main Injector Recycler
Energy (GeV) 120 8.9
Radius (m) 528.3 528.3
Magnetic field (T) 1.72 0.145
Bending radius (m) 232.55 203.2
γtr 21.62 19.97
|η| 0.00208 0.0086
Vrf 1.1 MV 1.8 kV
h 588 1

Table 1: The parameters of the Main Injector and the Recycler during data acquisition.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 1600  1650  1700  1750  1800

(a) Main Injector line shape

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  1000  2000  3000  4000  5000
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Figure 2: The line shapes of the Main Injector and the Recycler. The Recycler line shape is roughly
square with hard edges as opposed to a more typical shape similar to a Gaussian as seen in the Main
Injector.

Accelerator Parameters

Data was taken across two accelerators, the Main Injector and the Recycler, which both reside in the
same tunnel at Fermilab. The data, as it was taken, can be seen in Figure 2. This is all of the data that
is used to reconstruct the phase space. Their conditions at data acquisition are outlined in Table 1.

Path Modeling

My first project was to write code to model paths in an ideal sine wave rf bucket using some parameters
from the Tevatron and the recursive algorithm[2] for the energy and the phase as a function of turns.

{

∆En+1 = ∆En + eV (sin φn − sin φs)

φn+1 = φn + 2πhη
β2E

∆En+1.
(1)

In addition, I solved the Hamiltonian for the separatrix,

H =
1

2

hη

β2E
(∆E)2 +

eV

2π
[cosφ − cosφs + (φ − φs) sin φs] (2)
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Figure 3: In the phase space diagram for a sine rf waveform, the outer particles move more slowly since
the period increases with amplitude. The inner particles move nearly as ellipses which are increasingly
deformed as amplitude is increased.

(∆E)2 =
eV β2E

πhη
(1 − cosφ) (3)

which is shown with several particle traces in Figure 3. Note that the period increases as a function of
radius. Next, I repeated the process for a barrier bucket as shown in Figure 4. The bucket, in phase
space, is given by











(∆E)2 = eV β2E
πhη

φ for 0 < φ < 2π T1

2T1+T2

(∆E)2 = eV β2E
πhη

1

2
for 2π T1

2T1+T2

< φ < 2π T1+T2

2T1+T2

(∆E)2 = eV β2E
πhη

(2π − φ) for 2π T1+T2

2T1+T2

< φ < 2π.

(4)

as seen in Figure 5. Modifying a Fast Fourier Transform [3] code I found the tune, Figure 6 as a function
of the frequency for both the sine and barrier buckets. The tune of the barrier rf wave has a rather
different shape as shown in Figure 7. Focusing on the rising part of the wave, and varying the ratio of
T 1 to T 2 where T 1 is the width of each pulse and T 2 is the width of the empty area in between, we see
(Figure 8) that as the ratio increases across 1/4, we see that the tune obtains a local maximum which
could lead to instabilities.

Data Collection

With Dr. Bhat’s assistance, I became familiar collecting data from the main control room. I took data
from the Recycler with a barrier rf wave, as well as the Main Injector with a typical sine rf wave for
comparison and to use to become familiar with the tomography code. The Main Injector data was taken
at 120 GeV with 84 bunches circling and the Recycler data was taken at 8 GeV immediately before and
immediately after injection. Next I tracked down the source code for the program used to write the code
in order to write it from binary to ascii.
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Figure 4: The wave forms in the Main Injector and the Recycler

Figure 5: In the phase space diagram for a barrier barrier rf waveform, the outer particles move more
quickly through parabolas and then lines of constant energy. Moreover, those in the middle are not
kicked at all, and thus have no tune (see Figure 7).
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Figure 6: The tune of particles in a sine rf bucket as a function of phi. Note that as particles move
toward the center, their tune and correspondingly their synchrotron frequency increases.
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Figure 7: The tune of particles in a barrier rf bucket as a function of phi. Note that the tune is 0 for
particles with ∆E = 0 and phase within the middle of the barriers.
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(a) T1/T2 = 0.20
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(b) T1/T2 = 0.25
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(c) T1/T2 = 0.30
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(d) T1/T2 = 0.40

Figure 8: Plots of the the tune in the barrier rf wave for various T1/T2 ratios. At 1/4 the derivative
hits zero, and for a ratio above 1/4 there is a clear maximum.
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Data Analysis

Once I dumped the binary file to ascii, I then ran it through the CERN tomography code [1]. This took
quite a bit of manipulation to get the program to run. With a small enough sample size and correct input
flags, however, it worked without problems and reconstructed the phase space in the Main Injector.

Plotting

Even after the main tomography code was done reconstructing the phase space, the setup relied on a
slow and obsolete Mathematica setup to generate the phase space plots. I replaced this with my own
Python program using matplotlib. Plots from two bunches from the Main Injector at two different
times can be seen in Figure 9. These are the same two bunches whose line shapes are shown in Figure
2.

Recycler

My next project was to modify all this code to work with the Recycler and the barrier bucket rf wave
which operates differently not only in the ways described above, but the tomography code does not
work for a barrier bucket and was modified for the different wave shape. However due to complications
with the definition of the synchronous particle and the need for a derivative of the rf (zero everywhere
except for at 0, T 1, T 1+ T 2, 2T 1+ T 2 where it is a delta function) this is still a work in progress. Some
reconstruction has (Figure 10) been completed, but the accuracy cannot be guaranteed at this point.
Nonetheless, the reconstruction showed some promise in that the scale in each dimension matched the
expected values and the shapes were roughly that expected. The program diagnostics, however suggested
some errors in the tracking.

Vlasov Equation

The Vlasov equation is a partial differential equation that describes the evolution of phase space density
given by[4]

∂f

∂t
+

∂f

∂q
·
∂H

∂p
−

∂f

∂p
·
∂H

∂q
= 0

This equation can be used as the theoretical counterpart to the experimental data. Instead of tracking
individual particles, it instead calculates the changes to a probability density function. Since, in the
Recycler, most of the action occurs in the tails where there are relatively few particles, tracking particles
is very expensive and noise dependent. The Vlasov equation is solved numerically and has less noise
in the tails than in particle tracking methods because it tracks a function, so information is not lost in
the tails or elsewhere. The code at present, however, suffers from long term stability problems as it was
designed to run for a low number of turns while in the Recycler it takes ∼ 105 turns for one synchrotron
period. The area of the distribution tends to diverge from 1 after a sufficiently long number of turns.
Plotting the phase space distribution (Figure 11) as the code progresses can help diagnose problems
before they blow up.

Conclusions and Future Work

The particle tracking provided valuable insight into the synchrotron processes in the Main Injector and
the Recycler. Frequency decreases as a function of radius in phase space in a sine wave and increases



Longitudinal Phase Space Reconstruction 9

�5 0 5
ns

�400�300�200�100
0

100

200

300

400

M
e
V

(a) At the beginning of the data set.
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(b) At the end of the data set about twenty synchrotron

periods later.
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(c) A different bunch from the same data set. At the be-

ginning of the data set.

�5 0 5
ns

�400�300�200�100
0

100

200

300

400

M
e
V

(d) At the end of the data set about twenty synchrotron

periods later.

Figure 9: The phase space of two different bunches at two different times in the Main Injector. The
exact times cannot, however, be identified since the line shapes over a non-zero amount of time must be
used in the tomography code. Thus the result is a sort of “average.” Note that different bunches can
exhibit very different phase spaces.
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Figure 10: An attempt at the reconstruction of the phase space in the Recycler. Likely discrepancies
include the slope of the bunch, the separate peaks on the left and right, and the tails going off into cut
off regions.

in a barrier wave. Similarly, the tunes behave very differently. In the Main Injector there were about
two synchrotron periods worth of data while in the Recycler we were limited by the scope to just under
one synchrotron period, limiting the ability for accurate Recycler reconstruction. In order to run the
tomography code I had to first convert the data to a usable form, then write a new graphics package, and
finally understand the details of the code in order to correct for flaws in the reconstruction. Looking at
the actual phase space plots, the evolution of the Main Injector phase space shows not only synchrotron
rotation but also octupolar instabilities as well as sizable bunch to bunch variations. Finally, the Vlasov
code will be used to compare to the experimental phase space reconstruction.
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Figure 11: Given an off center bunch, it will tend to slide back towards the middle undulating as it
does so.
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