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Abstract

In [1], a new minimum-emittance theory was derived for minimizing storage ring emit-
tance, and [2] explored numerically the associated bending profiles for optimal emittance re-
duction in three cases: theoretical minimum emittance (TME), achromatic minimum emittance
(AME) and effective minimum emittance (EME). The bending profiles obtained were relatively
simple, and were amenable to approximations by piecewise analytic functions. In this paper,
we perform such approximations, and derive (approximate) analytic expressions governing
the optimal emittance reduction for the three cases, and numerically evaluate the emittance
reduction factor together with various useful quantities as a function of κ ≡ Bmax/Bref. In
addition, we generalize the sandwich dipole studied in [1] to include reverse bending, which
may be useful to the case of a wiggler. We also derive the transfer matrix for which the bending
profile is linear in nature: ρ(s) = ρ0(s − s0). Lastly, we consider a variational approach to the
optimization of the minimum-emittance, as yet another attempt at the optimization question.
We find that while theoretically plausible such an approach is too complicated for any useful
calculations.

1 Introduction

The emittance of a beam is defined as its size in phase space, and is governed primarily by two fac-
tors: synchrotron radiation and quantum excitations [3]. Synchrotron radiation reduces the energy
of the beam and reduces the emittance, while quantum fluctuations of radiation of the particles in

∗Department of Physics, Princeton Universty, Princeton, New Jersey 08544, USA
†Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA

1



the beam (in random directions) increases the beam’s emittance. There therefore exists a minimal,
non-zero emittance of a beam, which is determined by the magnetic profile B(s) ∝ 1/ρ(s) of an
magnetic element in an accelerator. In this paper we shall only consider dipole magnets with no
transverse gradient, i.e. that ∂xB(s) = 0.

Before we discuss the mathematical theory of beam emittance, we discuss qualitatively why
having as low a beam emittance as possible is desirable. Accelerators are used for many purposes
today - ranging from high energy particle collisions to probe the constituents of matter, to produc-
ing rare isotopes for medical research, and to generating hard X-rays for use in various areas of
research, to list a few. For example, the Advanced Photon Source (APS) at Argonne National Lab-
oratory has a storage ring that is used for the very last purpose mentioned above. It is desirable
to obtain a high intensity of radiation (this is termed brilliance), since certain experiments require
radiation with deep penetrating power. The intensity of the X-rays generated is in turn related to
the emittance of the beam in the storage ring - a lower emittance creates more brilliant X-rays. The
question therefore falls to lowering the beam emittance as far as possible. As another example of
why a low beam emittance is desired, the luminosity (rate of collisions) in a particle accelerator
depends on the size of the colliding beams - it is intuitively clear that the smaller the beams are, the
higher the luminosity. The question once again falls to minimizing the beam emittance for higher
luminosities. As a last example on why low emittance is desired, low-emittance bending cells are
important for preserving the beam quality in arcs of energy-recovery linac based light sources [1].

The mathematical theory which gives the beam emittance, considering the factors of syn-
chrotron radiation and quantum excitations, is relatively straightforward to derive and can be
found in [4]. We shall not repeat the derivation here, but merely state the final results. Assuming
negligible insertion-device contributions, the horizontal emittance of a beam in a storage ring is:

εx = Cqγ
2
L

〈H/|ρ3|〉
Jx〈1/ρ2〉

, (1)

while the beam energy spread is:

σ2δ = Cqγ
2
L

〈1/|ρ3|〉
JE〈1/ρ2〉

, (2)

where γL is the Lorentz factor, Jx and JE are the horizontal and longitudinal damping partition
numbers respectively, and Cq is a particular constant that depends on the nature of the particles
of the beam in question. For electrons, Cq = (55/32

√
3)(~/mc) = 3.83× 10−13 m. ρ is the bending

profile of the dipole1, which as noted before is inversely proportional to the magnetic field profile
B, 〈· · ·〉 refer to the averaging over the length of the magnet, while the dispersion action is given
by:

H = γη2 + 2αηη′ + βη′2, (3)
1Equations 1 and 2 are still valid for any device, not just dipoles in particular. As mentioned, we will be only

considering dipoles in this paper, so we will henceforth refer to the devices we are considering as dipoles or magnets
interchangeably.
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where β, α and γ are the usual Courant-Snyder (CS) parameters. η and η′ are the dispersion
function and its derivative with respect to the longitudinal direction respectively, whose profile is
determined by the bending profile of the magnet. The equation govering η is:

η′′ +
1

ρ(s)2
η =

1

ρ(s)
, (4)

which is a linear, second order ordinary differential equation. The solution of the differential
equation can be cast as:

~η(s) = M(s0|s)~ηs0 + ~ξs0(s), (5)

where ~η(s) ≡ [η(s), η′(s)]T is the dispersion vector in phase space, M(s0|s) the transfer matrix
from point s0 to s, ~ηs0 the initial disperion vector at the point s0, and ~ξs0(s) the inhomogenous
solution to the differential equation, termed the dispersion generating vector. Due to the form
of the solution, ~ξs0(s) depends explicitly on the reference point s0, hence the subscript s0. In
particular, because M(s0|s0) = I, the identity matrix, ~ξs0(s) is by definition 0 at s0.

This therefore gives all the formulas necessary to ascertain the emittance of a beam in a bending
magnet. By choosing different bending profiles ρ(s), subject to certain constraints (such as the total
bending angle being constant), the functionals governing the emittances, defined by equations 1
and 2, will change accordingly. Hence there might possibly exist an optimal bending profile ρ(s)

for which the functionals are minimized. The problem of minimizing the beam emittance is thus
one of optimization of ρ(s), and we might employ methods such as the variational method to
tackle this problem. In this paper, we will only consider minimizing the horizontal beam emittance
for this paper, equation 1.

2 Minimization of emittance

A novel theory behind the minimization of the beam emittance has been given in [1]. In that paper,
the author has shown that the minimization of the quantity 〈〈H〉〉 ≡ 〈H/|ρ|3〉/〈1/ρ2〉 is equivalent
to the minimization of

〈〈H〉〉 = Tr(Gs0σ
+
s0), (6)

where σ+s0 is the matrix of CS-paramters

σ+s0 =

[
γs0 αs0
αs0 βs0

]
, (7)

and Gs0 the matrix

Gs0 ≡ ρ̌ ~ηs0 ~ηs0T + ~ηs0〈〈~̂ξs0〉〉T + 〈〈~̂ξs0〉〉 ~ηs0T + 〈〈~̂ξs0 ~̂ξTs0〉〉. (8)
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The subscript s0 corresponds only to the quantities at the beginning of the magnet, a point
which should not be overlooked - the theory does not hold if one uses a different reference point,
which will be discussed in the subsequent section. The variable ρ̌ is defined to be

ρ̌ ≡ 〈1/|ρ|
3〉

〈1/ρ2〉
, (9)

and in similar fashion

〈〈· · ·〉〉 ≡ 〈· · · /|ρ|
3〉

〈1/ρ2〉
. (10)

The variable ~̂ξs0(s) is defined to be ~̂ξs0(s) ≡ M(s0|s)−1~ξs0(s). Note that while ~ξs0(s) is defined

to be [ξs0(s), ξ′s0(s)]T , in general ~̂ξs0(s) 6= [ξ̂s0(s), ξ̂′s0(s)]T . We shall term the variable ~̂ξs0(s) as the
projected dispersion generating vector.

The minimum emittance is given by the condition 〈〈H〉〉min = 2
√
|Gs0 | with the optimal CS

parameters σs0 = Gs0/
√
|Gs0 | at the beginning of the dipole. The minimum emittance is achieved

when the dispersion is proportional to the weighted average of the projected dispersion generat-
ing vector,

~ηs0 =
q〈〈~̂ξs0〉〉

ρ̌
. (11)

Then, the matrix Gs0 becomes:

Gs0(q) = 〈〈~̂ξs0 ~̂ξTs0〉〉+ (q2 + 2q)〈〈~̂ξs0〉〉〈〈~̂ξs0〉〉T /ρ̌

≡ As0 + (q2 + 2q)Bs0 . (12)

We thus define the matrices:

As0 ≡ 〈〈~̂ξs0 ~̂ξTs0〉〉 (13)

and

Bs0 ≡ 〈〈~̂ξs0〉〉〈〈~̂ξs0〉〉T /ρ̌. (14)

We further define a quantity

cs0 ≡ −
Tr(JAs0JBs0)

|As0 |
, (15)

where J is the usual block matrix considered in symplectic matrices (to defineM+ ≡ −JMTM ):

J ≡

[
0 1

−1 0

]
. (16)

4



For AME, q = 0; for TME, q = −1, and for EME q is the solution to the cubic equation (τ ≡
Jx/JE):

(1 + τ)q3 + 2(2 + τ)q2 + [3 + (2 + τ)/c]q + 2/c0 = 0. (17)

The minimum emittance thus has a nice form:

〈〈H〉〉min = 2
√
|As0 + (q2 + 2q)Bs0 |, (18)

which can be further simplified to:

〈〈H〉〉min = 2
√
|As0 |

√
1 + (q2 + 2q)c, (19)

using the fact that As0 is invertible and |Bs0 | = 0.2 The minimization of beam emittance is
governed by just two numbers, |As0 | and cs0 , which gives us the characteristics of the dipole
magnet in question.

Therefore, for TME,

〈〈H〉〉min = 2
√
|As0 |

√
1− cs0 , (20)

while for AME,

〈〈H〉〉min = 2
√
|As0 |. (21)

3 Addendum to theory

The theory given in section 2 was derived for the specific case for which the projected dispersion

vector was evaluated at the beginning of the magnet s0, i.e. ~̂ξs0(s) ≡ M(s0|s)−1~ξ0(s). In general
the transfer matrix and the dispersion generating vector depend on the reference point (refer to
equation 5), and so the averages of the projected dispersion generating functions also depend on
the reference point.

Sometimes, in cases where there is symmetry, it is desirable to keep the definitions of Asi
and Bsi , equations 13 and 14, replacing the subscript s0 (corresponding to the beginning of the
magnet) to the subscript si (corresponding to any point within the magnet). For example, if the
bending profile is symmetric about the center of the magnet, then the dispersion function, the
transfer matrix, and the dispersion generating vector and the projected generating vector will be
symmetric about the center too. That this is obvious can easily be ascertained from equation 4:

2A0 has a non-zero determinant by invoking the Cauchy-Schwartz inequality, so A−1
s0 exists (See appendix C for

the details). Also, A−1
s0 is equal to A+

s0/|As0 |, a result easily verified. The form of Bs0 , equation 14, immediately

yields that |Bs0 | = 0.Thus, the quantity
√

|As0 + q̃Bs0 | =
√

|As0 ||(I+ q̃A−1
s0 Bs0)| =

√
|As0 |

√
|(I+ q̃A+

s0Bs0/|As0 |)| =√
|As0 |

√
(1 + q̃Tr(JAs0JBs0/|As0 |)), since the eigenvalues ofA+

s0Bs0/|As0 | are 0 and λ, giving |(I+q̃A+
s0Bs0/|As0 |)| =

(1)(1 + λ) = (1 + q̃Tr(JAs0JBs0/|As0 |)).
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letting the center of the magnet be at the origin, if η(s) is a solution of the differential equation,
then η(−s) automatically is too: this is reflectional symmetry of the system. In that case, ξ̂c(s) is
an even function, and ξ̂′c(s) an odd function, and since the weighted averages of any odd function
is 0, |Ac| and cc reduce to (the subscript c stands for center):

|Ac| = 〈〈ξ̂2c 〉〉〈〈ξ̂′
2

c〉〉,

cc =
〈〈ξ̂c〉〉2

ρ̌〈〈ξ̂2c 〉〉
. (22)

Calculations are therefore greatly simplified in this form, but there needs to be a way to link
the quantities |Asi | and csi with |As0 | and cs0 .

In what follows, the derivations are written out explicitly, for clarity.
We start with the solution of the dispersion function:

~η(s) = M(s0|s)~ηs0 + ~ξs0(s)

= M(s0|s)(~ηs0 + ~̂ξs0(s)) , by definition

= M(s1|s)M(s0|s1)(~ηs0 + ~̂ξs0(s)) , using M13 = M12M23

= M(s1|s)(~ηs1 + ~̂ξs1(s)) , by definition. (23)

We thus have the condition:

M(s0|s1)(~ηs0 + ~̂ξs0(s)) = ~ηs1 + ~̂ξs1(s). (24)

By definition,

~ηs1 = M(s0|s1)(~ηs0 + ~̂ξs0(s1)), (25)

and plugging this into the equation above, we obtain the relations:

~̂ξs1(s) = M(s0|s1)(~̂ξs0(s)− ~̂ξs0(s1)), (26)

~̂ξs0(s) = M(s0|s1)−1(~̂ξs1(s) + ~ξs0(s1)). (27)

Equation 27 therefore gives us the necessary relation to link A0 ≡ As0 , B0 ≡ Bs0 with A1 ≡
As1 , B1 ≡ Bs1 . By taking the weighted averages, and following the prescription that 〈〈k〉〉 = kρ̌

where k is a constant, one easily proves the follow identity:

A0 −B0 = M(s0|s1)−1(A1 −B1)(M(s0|s1)−1)T . (28)

We wish to inquire more about the nature of the transfer matrix. Explicitly, the matrix elements
of M(s0|s) are:
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[
m1(s0|s) m2(s0|s)
m′1(s0|s) m′2(s0|s)

]
. (29)

Also, the functions m1(s0|s) and m2(s0|s) are the solutions to the homogenous part of the
differential equation. That is, they satisfy independently the differential equation:

m′′i +
1

ρ2(s)
mi = 0. (30)

The determinant of the matrix M(s0|s) can be determined: it is a constant, and has unit value.
The proof of this can be seen as follows: the differential equation that the mi satisfy is equation 30,
which is a second order ODE that does not contain a term inm′i. Since the determinant is precisely
the Wronskian of m1 and m2, by Abel’s Theorem the Wronskian satisfies

W [m1(s),m2(s)] = ce
∫
p(s)ds = c, (31)

where p(s), the coefficient of m′i in the differential equation has been noted to be 0. Thus it
suffices to calculate the Wronskian at any one point, and the point s0 yields m1(s0) = 1,m2(s0) =

0,m′1(s0) = 0,m′2(s0) = 1, which gives c = 1. Hence, |M(s0|s)| = W [m1(s),m2(s)] = 1.
This fact immediately yields the relation:

|A0 −B0| = |A1 −B1|, (32)

an invariant of the system of equations. This corresponds to the value of the TME, equation 18,
since q = −1, and implies that one can use any reference point at which to define the dispersion
generating vector with to calculat the TME. Calculations are greatly simplified for the special case
of the TME, if the set-up exhibits some symmetry.

If we wish to consider the AME, then we will need to consider A0 (Contracting M(s0|s1) to
M ):

A0 = M−1(A1 −B1 +MB0((M
−1)T )−1)(M−1)T . (33)

By the same procedure as above,

|A0| = |A1 −B1|(1 + Tr((A1 −B1)
−1MB0((M

−1)T )−1)). (34)

Put in this form, one has a relatively simple relationship linking the matricesA0, B0, A1 andB1.
However, this form is not amenable to calculations because one still has to solve for the dispersion
generating vector for the reference point s0, and in addition to that take the weighted averages
over the dipole in order to obtain matrix B0, which defeats the purpose of using a different refer-
ence point for simplifying the calculations.

If instead we start from equation 27, and take weighted averages, we obtain:

A0 = M(s0|s1)−1(A1 + 〈〈~̂ξs1〉〉~ξTs0(s1) + ~ξs0(s1)〈〈~̂ξs1〉〉T + ρ̌~ξs0(s1)~ξTs0(s1))(M(s0|s1)−1)T . (35)
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We still have to find the dispersion generating vector for the reference point s0, ~ξs0(s1) , but
now we do not have to take the weighted average over the dipole, which simplifies the algebra

somewhat. If we put in s = s0 into equation 27, and recall that ~̂ξs0(s0) = ~ξs0(s0) = 0 by definition,
we obtain the relation:

~ξs0(s1) = −~̂ξs1(s0). (36)

We can turn equation 35 into a more symmetric form by writing it as

A0 = M(s0|s1)−1(A1 −B1 + ~ζ~ζT )(M(s0|s1)−1)T , (37)

where ~ζ is defined as:

~ζ ≡

〈〈~̂ξs1〉〉√
ρ̌
−
√
ρ̌~̂ξs1(s0)

 , (38)

which immediately yields the relation:

|A0| = |A1 −B1|
(

1 + Tr
(

(A1 −B1)
−1~ζ~ζT

))
. (39)

The question remains now to find the dispersion generating vector at our chosen reference
point s1, ~ξs1(s), something we will tackle in the next section. In conclusion for this section though,
one sees that the calculation for TME is invariant under choice of different reference points, some-
thing which we can use to greatly simplify our calculations.

4 Projected dispersion generating vector

We wish to find a formula to obtain the projected dispersion generating vector ~̂ξsi(s) at some
arbitrary reference point si, as stated in the previous section. In what follows we consider the case
for which si = s0, but the results hold similarly for any reference point si.

We start from the form of the dispersion equation:

~η(s) = M(s0|s)( ~ηs0 + ~̂ξs0(s)). (40)

Differentiating with respect to s gives:

~η′(s) = M(s0|s)′( ~ηs0 + ~̂ξs0(s)) +M(s0|s)~̂ξ′s0(s), (41)

and the first term can be written explicitly, using the differential equation that η(s) satisfies:

~η′(s) ≡

[
η′(s)

η′′(s)

]
=

[
η′(s)

− η(s)
ρ2(s)

+ 1
ρ(s)

]
. (42)

Eliminating ~ηs0 + ~̂ξs0(s) via equation 40 yields:
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[
η′(s)

− η(s)
ρ2(s)

+ 1
ρ(s)

]
= M(s0|s)′M(s0|s)−1

[
η(s)

η′(s)

]
+M(s0|s)~̂ξ′s0(s), (43)

which can be rearranged for the projected dispersion generating vector:

~̂ξ′s0(s) = M(s0|s)−1
([

η′(s)

− η(s)
ρ2(s)

+ 1
ρ(s)

]
−M(s0|s)′M(s0|s)−1

[
η(s)

η′(s)

])
. (44)

Using the form of M(s0|s) as was discussed in the previous section, one is able to expand
the terms in the parenthesis in equation 44 to obtain the relatively simple and surprising general
result, for all profiles:

~̂ξ′s0(s) = M(s0|s)−1
[

0
1
ρ(s)

]
. (45)

This is thus the desired equation to be solved in order to get the projected dispersion generat-
ing vector. Upon integration, the dispersion generating vector is obtained by matrix multiplying
the transfer matrix, as per the definition.

5 Approximation for projected dispersion generating vector

We can make quite a general statement regarding the approximation of the equation for the pro-
jected dispersion generating vector

~̂ξs0(s) =

∫
M(s0|s)−1

[
0
1
ρ(s)

]
ds. (46)

First we write the solution of the dispersion function in terms of the matrix elements m1 and
m2:

η(s) = ηs0m1(s0|s) + η′s0m2(s0|s) + ξs0(s) and

η′(s) = ηs0m
′
1(s0|s) + η′s0m

′
2(s0|s) + ξ′s0(s) (47)

By definition, ~ξs0(s0) = 0, and so the nature of the solutions m1(s0|s) and m2(s0|s) must be
such that

m1(s0|s) = 1 +O((s− s0)2)

m2(s0|s) = (s− s0) +O((s− s0)2)

m′1(s0|s) = O(s− s0)

m′2(s0|s) = 1 +O(s− s0), (48)
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in order that η(s0) is ηs0 and similarly η′(s0), η′s0 .
In light of this, the inverse of the matrix M(s0|s) (recalling that the determinant is 1) can be

written as:

M(s0|s)−1 =

[
1 +O(s− s0) −(s− s0) +O((s− s0)2)
−O(s− s0) 1 +O((s− s0)2)

]
. (49)

The analysis in the preceding paragraph presupposes that one is able to write a Taylor se-
ries for the two functions m1(s) and m2(s). Now, the nature of the homogenous solutions m1

and m2 depend upon the nature of ρ(s). If ρ(s) is a piecewise continuous function, then the ho-
mogenous solutions do not have well-defined second derivatives, since limε→0 η

′′
xp+ε − η′′xp−ε =

limε→0−(1/ρ2(xp + ε))η(xp + ε) + −(1/ρ2(xp − ε))η(xp − ε) 6= 0, at a point xp where the second
derivative is not defined. If worse, ρ(s) is discontinuous, then the homogenous solutions will
have not well-defined first derivatives, as can be seen by integrating the differential equation once
and taking limits. However, in both cases, η(s), and hence m1(s) and m2(s), are continuous at
any ‘bad’ points, and we are therefore able to approximate uniformly the solutions by polynomi-
als according to the Weierstrass approximation theorem throughout the entire (compact) interval
we are considering. We are then justified in writing the solution for ~η(s) as in equation 5, with
the matrix elements the polynomial approximations to the actual (not smooth) solutions to the
homogenous differential equation. Our analysis above is then quite general, and can be used to
obtain a simplification for the formula of the projected dispersion generating vector. Now if in
addition m1(s) and m2(s) are assumed to be slowly varying functions, then expanding m1(s) and
m2(s) to first order and correspondingly m′1(s) and m′2(s) to zeroth order, the inverse matrix can
be approximated to be:

M(s0|s)−1 ≈

[
1 −(s− s0)
0 1

]
. (50)

The first order approximation to the projected dispersion generating vector is then given by
the integrals: [

ξ̂1,s0(s)

ξ̂2,s0(s)

]
≈

[∫ −(s−s0)
ρ(s) ds∫
1
ρ(s)ds

]
. (51)

6 Optimal bending profile ρ(s) for minimum TME

Consider the following optimization problem: given a certain bending angle θ, what is the optimal
bending profile ρ(s) that will minimize the TME?

Note that this is quite a different question from the minimization theory discussed before. In
the previous section, given a bending profile, one can choose CS-parameters in a certain combi-
nation at a reference point in the magnet in order to achieve the TME. Now, the problem is about
choosing the optimal bending profile that will minimize that TME for a given total bending angle
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θ =

∫ s0+L

s0

1

ρ(s)
ds. (52)

In [2], an evolutionary program has been written to find the optimal bending profile for TME.
In a nutshell, the program divides the length of a magnet into many thin slices, and assigns a
value of of ρ in each finite length, subject to the constraint. Then, it calculates the TME for this one
profile, before changing slightly the values of ρ in some elements and then repeats the calculation
again. Comparing the two calculations, the program then chooses the minimal one, and then
repeats the process until it believes it has found a global minimum. Figure 1 shows the results,
with the optimal TME profile being the red plot.

Figure 1: The optimal bending profile as obtained from the evolutionary profile. The red plot
corresponds to the optimal TME profile, the blue plot the optimal AME, and finally the green plot
the optimal EME profile.

From the plot, it appears that the optimal TME profile can be approximated by a piecewise
continuous function consisting of a straight line sloping downwards, a flat portion, and a straight
line sloping upwards, with the entire function symmetric about the center of the magnet. If we
center the magnet at the origin, then the equation for the bending profile in the positive s region
will be given as such:

ρ(s) =

{
ρ0 0 ≤ s < L0

ρ0

(
1 + g

(
s
L0
− 1
))

L0 < s ≤ L1,
(53)

where

g ≡ r − 1

L− 1
, (54)

with r ≡ ρ1/ρ0 and L ≡ L1/L0. With this definition, ρ(L1) = ρ1. Also, the function is defined
to be symmetric about s = 0. Thus, the bending magnet has a total length 2L1.

The constraint given by the bending angle is, upon integration:
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θ =
2L0(g + ln r)

gρ0
. (55)

We then perform the weighted averaging as specified in the sections above, to obtain the ma-
trices A1 and B1, and thus 〈〈H〉〉min = 2

√
|A1|
√

1− c1. Finally, we normalize our results against
the TME of the ideal, uniform dipole of equal length and equal bending angle, which is given by
θ3/12

√
15.

Before we proceed, we pause to perform some analysis of the form that the function corre-
sponding to the normalized TME will take. In describing the bending profile, we require 4 param-
eters. In terms of ‘natural’ parameters, they are: L0, L1, ρ0 and ρ1, which describe the length and
the bending radii respectively. Now there is one constraint on the system, which is that the bend-
ing angle must be a constant, equation 55, and this therefore eliminates one of the parameters. In
addition to that, it can be shown that the system exhibits scale invariance [1], so we are able to de-
fine a new variable h(L0, L1, ρ0, ρ1) that is scale invariant: h(L0, L1, ρ0, ρ1) = h(λL0, λL1, λρ0, λρ1).
Thus the number of parameters that we will eventually end up with is 2. The set of ‘natural’ pa-
rameters is not necessarily the most convenient one to work with, and we will find it more useful
to work with the parameters g and r given above. Then, the function for the normalized TME will
be of the form FTME = FTME(g, r).

Now, the working for the functionFTME is straightforward but tedious, and the final expression
is messy and cumbersome. It can be found in appendix A. A contour plot of the normalized TME,
FTME(g, r), is given in figure 2.
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Figure 2: Contour plot of the FTME for the optimal profile.

We now define a new variable, λ, defined as Bmax/Bref where ‘ref’ refers to the reference,
ideal, uniform dipole of similar bending angle. This is equivalent to the ratio ρ0/ρref, and can be
obtained by equating the bending angles of the ideal dipole of equal length with that of our set-
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up in consideration. λ has the form λ(g, r), which can be solved implicitly for g(λ, r). With this
substitution, we can express the normalized TME as a function of λ and r only, F̃TME = F̃TME(λ, r).
For a fixed value of λ, there exists a minimum for the normalized TME. That point represents the
bending profile for which the profile is the best approximation to the optimal bending profile
obtained from the computer program. We plot the graphs for the various useful quantities against
λ, such as the improvement factor over the uniform dipole, f ≡ 1/Normalized TME, and also
rmin, Lmin and gmin. These are given in figure 3.

We obtain numerical values for f for λ = 2, 4, 6, which are approximately 3.14, 5.63, 7.38 re-
spectively, in agreement with the values obtained from the evolutionary program used in [2]. We
also note that f reduces to 1, as it should, in the case when r → 1 or L→ 1, since the set-up reduces
to that of the ideal dipole. In the case when L → ∞, the set-up reduces to that of the symmetric
linearly increasing profile, and the resulting algebraic expression agrees with that obtained in the
appendix in [2].

7 Optimal bending profile ρ(s) for minimum AME

In section 6, we considered the optimization problem of minimizing the TME of a bending magnet.
Sometimes, we wish to impose additional constraints on the system, such as the condition that the
bending magnet be achromatic - which is to say that the dispersion function and its derivative are
both 0 at the beginning at the entrance:

~ηs0 = 0. (56)

In general, the optimal bending profile that will minimize the emittance will not be the same
as that for the TME if this constraint is met. We therefore term the minimized emittance for achro-
matic magnets ‘Achromatic minimum emittance’, or AME for short.

In [2], the optimal bending profile that will achieve AME was also analyzed and obtained via
the evolutionary program, and the results can be seen in figure 1. Evidently, the optimal AME
profile is not symmetric about the center of the magnet, and is not the same as the optimal TME
profile. Instead, it consists of a flat section and then a linear ramp. From this observation, we are
led to consider the following bending profile which consists of a linear ramp down, a flat section,
followed by a linear ramp up:

ρ(s) =


ρ0

(
(a− 1) s

L0
+ 1
)

0 ≤ s < L0

ρ1 L0 < s ≤ L1

ρ1

(
b−1
y−1

s
L1

+ y−b
y−1

)
L1 < s ≤ L2,

(57)

where a ≡ ρ1/ρ0, b ≡ ρ2/ρ1 and y ≡ L2/L1. We will also find it useful to define the dimen-
sionless quantity d ≡ L0/L1. We also assume that ρ0 ≥ ρ1, ρ2 ≥ ρ1, and that L0 ≤ L1 ≤ L2. These
assumptions mean that a ∈ (0, 1], b ∈ [1,∞), y ∈ [1,∞), and d ∈ [0, 1].
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(a) Plot of the optimal improvement fac-
tor f against λ. The fourth order polyno-
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(c) Plot of Lmin against λ. The fourth or-
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(d) Plot of gmin against λ. The fourth or-
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Figure 3: Plots of various useful quantities of the approximation of the optimal TME against λ.
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The number of parameters of this set-up is six, and the number of constraints on this set-up
is one, like in the case of the TME. We are also able to define a dimensionless parameter of the
resulting five parameters that reflects the scale invariance of the set-up to reduce the total number
of variables needed to describe the set-up to four. It turns out that our astute introduction of the
four dimensionless quantities a, b, y and d are indeed enough enough the describe the set-up at
hand.

Once again, the calculations are straightforward but extremely inelegant and messy, and we
shall not present the formulae either here or in the appendix. It is sufficient to understand that
we end up with a function of the normalized AME (normalized to the AME of the ideal dipole,
θ3/4
√

15),

FAME = FAME(a, b, y, d), (58)

where FAME is just 2
√
|A0|.

In order to compare the results with those in [2], we eliminate y in favor of κ ≡ Bmax/Bref =

ρref/ρ1, which is the same quantity as λ in section 6. The substitution in this case is:

y =
κ(a(−1 + b)d ln(a)− (−1 + a)((−1 + b)(−1 + d) + ln(b)))

(−1 + a)(−1 + b− κ ln(b))
. (59)

However, y ≥ 1. Thus while the range of κ is > 1, we require simultaneously the domain of
the function to be restricted to

κ(a(−1 + b)d ln(a)− (−1 + a)((−1 + b)(−1 + d) + ln(b)))

(−1 + a)(−1 + b− κ ln(b))
≥ 1. (60)

With this in mind, we plug in different values of κ into our expression for the new normalized
AME, F̃AME, and minimize simultaneously a, b and d, consistent with their domains and the re-
striction above. We use the FindMinimum function in Mathematica. Figure 4 shows the resulting
plots for 1.1 ≤ κ ≤ 10.

Notice that the plots of the normalized emittance, b, and y are smooth, but those of a and d are
erratic. However, note that the numerical values of d are extremely small - less than 10−7, and it is
essentially 0. The fact that it is not exactly 0 could be attributed to small errors of the minimization
method that Mathematica uses, but for our purposes we can treat it to be 0. Physically, this means
that the value of the starting point L0 is 0 - there is no linear ramp down. Consequently, the value
of a does not matter, as long as it is not too close to 1 that its effect is comparable to the other
sections of the magnet. Mathematically, we can express this condition as that the bending angle
from the linear ramp down is negligible compared to the bending angle of the other two sections:

L0

ρ0
� L1 − L0

ρ1
, (61)

and

L0

ρ0
� L2 − L1

ρ2
. (62)
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(a) Plot of the emittance reduction factor against
κ. The best fit is −0.2992 + 1.894κ − 0.3353κ2 +

0.03198κ3 − 0.001168κ4.

2 4 6 8 10
Κ

0.2

0.4

0.6

0.8

a_AME

a_AME

(b) Plot of amin against κ.

2 4 6 8 10
Κ

10

20

30

40

50

60

b_AME

b_AME

(c) Plot of bmin against κ. The best
fit is −4.092 + 5.461κ + 0.2046κ2 −
0.008556κ3 + 0.0001479κ4.

2 4 6 8 10
Κ

5

10

15

20

25

y_AME

y_AME

(d) Plot of ymin against κ. The best
fit is −0.9651 + 2.056κ + 0.1210κ2 −
0.005391κ3 + 0.0001228κ4.

0 2 4 6 8 10
Κ

2. ´ 10-8

4. ´ 10-8

6. ´ 10-8

8. ´ 10-8

d_AME

d_AME

(e) Plot of dmin against κ.

Figure 4: Plots of various useful quantities of the approximation of the optimal AME profile
against κ. 16



Rewriting it in terms of our paramters a, b, y, d, we get:

a� 1

d
− 1, (63)

and

a� y − 1

bd
. (64)

Eyeballing from figure 4, we see that a ≤ 1, d ≤ 10−7, b ≤ 70 and y ≥ 1.4 (corresponding to the
value of κ = 1.1. The first condition is satisfied without concern, as:

1� 107, (65)

and the second condition is also satisfied, since:

1� 1.4− 1

70× 10−7
= 5.7× 104. (66)

Thus, we do not concern ourselves with the numerical value that a takes in our numerical
optimzation; the fact that the plot is erratic is but just an artifact of the imperfect minimization
methods employed by Mathematica.

As a check of our results, we note that for κ = 2, 4, and 6, the emittance reduction factor is
2.42, 3.64 and 4.41, in agreement with the values on figure 2 of [2]. For κ = 4, the optimal AME
profile is given by d ≈ 0, a = 0.657(irrelevant), y = 8.82, and b = 20.5, which give to a good
approximation the same profile as that obtained in [2], as seen in figure 1.

8 Optimal bending profile ρ(s) for minimum EME

Similarly to sections 6 and 7, where we considered the optimal bending profile that minimized the
TME and AME respectively, we consider approximating the optimal profile that gives the minimal
effective minimum emittance (EME) by piecewise analytic functions. A glance at the green plot of
figure 1, which is the optimal EME obtained by the evolutionary program, suggests that we can
perhaps approximate the bending profile as such:

ρ(s) =


∞ 0 ≤ s < L0

ρ0 L0 < s ≤ L1

ρ0

(
r−1
L−1

s
L1

+ L−r
L−1

)
L1 < s ≤ L2,

(67)

where L ≡ L2/L1 and r ≡ ρ1/ρ0. We also define for future use λ ≡ L0/L1. We also assume
that ρ1 > ρ0, which means that L ∈ [1,∞), r ∈ [1,∞) and λ ∈ [0, 1]. Physically, this represents a
drift space, followed immediately by a flat section followed by a linear ramp up.

We can proceed to the find the projected dispersion generating vector, as per normal, but we
note here a simple way of obtaining the expressions for A and c for this set-up, from that of the
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(optimal) AME profile. To be precise, assume that we have obtained an expression for A and c for
the optimal AME profile:

ρ(s) =

{
ρ0 0 < s ≤ s1

ρ0

(
r̃−1
S−1

s
s0

+ S−r̃
S−1

)
s1 < s ≤ s2,

(68)

where r̃ and S ≡ s1/s0 are defined in the usual way. Let us call the A obtained A1, and the c
obtained c1.

Now, prepend a drift space of length s0 to the AME profile, so that the beginning of the drift
space is at point −s0. Define σ ≡ s0/s1. Then, physically, this set-up is identical to the profile we
are considering for the EME, if we make the identification that L = (s + σ)/(1 + σ), r̃ = r, and
λ = σ/(1+σ). Notice also that the projected dispersion generating vector in the drift space is the 0
vector; thus, A1 and c1 represent theA and c obtained for the EME profile except that the reference
point is at the end of the drift space. To find out A and c with the reference point at the beginning
of the drift space (i.e. at the beginning of the entire magnet, and let us call the pair A0 and c0), we
need only apply the results obtained in section 3 to shift the reference points.

Since the projected dispersion generating vector is the 0 vector, the zeta vector in equation 38

is just 〈〈~̂ξ1〉〉, and therefore from equation 37,

A0 = M(s0|s1)−1A1(M(s0|s1)−1)T , (69)

where M(s0|s1) is the transfer matrix from s0 to s1 for a drift space. One then obtains:

|A0| = |A1|. (70)

As for c0, one can either go through the same procedure, expressing c1 in terms of c0, but it is
easier to argue that since the TME is invariant, independent of the reference point, and is equal to
2
√
|A|
√

1− c, c must therefore be the same:

c0 = c1. (71)

Thus, if we have the expressions for A1 and c1 for the optimal AME profile, no further inte-
gration is necessary, and all that is required is multiplication by the transfer matrix of the drift
space.

In any case, one computes A(L, r, λ) and c(L, r, λ), and replaces λ in favor of κ ≡ Bmax/Bref =

ρref/ρ0:

λ =
−(−1 + r)(L− κ) + (−1 + L)κ ln(r)

(−1 + r)κ
. (72)

The expression for the EME expression is

〈〈H〉〉EME = 2
√
|A|

√
[1 + (q + 3)qc/2](1 + [(1 + τ)q + 3]qc/2)

1 + qc
, (73)
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where the q parameter is determined by the roots of the cubic equation:

(1 + τ)q3 + 2(2 + τ)q2 + [3 + (2 + τ)/c]q + 2/c = 0, (74)

with τ ≡ Jx/JE . For the purposes of this paper, we use the value τ = 1/2, which reduces the
cubic equation to:

3

2
q3 + 5q2 +

(
3 +

5

2c

)
q +

2

c
= 0. (75)

We can solve for c, and input it into right-most term in the expression for the EME, equation
73, to obtain:

√
−q2

48 + 80q + 24q2
. (76)

We plot −q2/(48 + 80q + 24q2) as a function of q, as shown in figure 5.
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q

-0.5

0.5

-

q2

48 + 80 q + 24 q2

Figure 5: Graph of −q2/(48 + 80q + 24q2) against q.

We see that the function is only positive for (−5−
√

7)/3 ≤ q ≤ (−5 +
√

7)/3, and zero at q = 0.
The point q = 0 obviously cannot be a solution to the cubic equation 75, thus, in choosing which
root to pick from the solution of the cubic equation, we pick the one that lies within 1/3(−5−

√
7) ≤

q ≤ 1/3(−5 +
√

7).

A slight complication arises when all three roots lie within this range, which occurs for c
around and above 0.995. However, we notice that for 0 ≤ c ≤ 0.995 (in equation 75), only one of
the roots of q is always within the range. Since 0 ≤ c ≤ 1 (refer to Appendix C for the proof), we
pick that particular root as the solution to the cubic equation.

This root of q is then:
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q = −10

9
− 45c− 46c2

9c
(

189c2 − 190c3 + 9
√

3
√

375c3 − 1003c4 + 880c5 − 252c6
)1/3

+

(
189c2 − 190c3 + 9

√
3
√

375c3 − 1003c4 + 880c5 − 252c6
)1/3

9c
. (77)

We plug this into equation 73, normalize the expression with respect to the EME of the ideal
dipole, and then minimize with respect to L and r, for fixed κ, subject to the constraint on the
domain 0 ≤ λ(L, r, κ) ≤ 1.

The results for κ = 2, 4, 6, 8 are surprising. The emittance reduction factors and the corre-
sponding minimum values are:

κ = 2, (L, r, λ)→ (3.41, 8.19, 2.19× 10−7),Factor = 2.30

κ = 4, (L, r, λ)→ (8.21, 22.3, 4.94× 10−5),Factor = 3.35

κ = 6, (L, r, λ)→ (13.4, 37.4, 1.83× 10−6),Factor = 4.00

κ = 8, (L, r, λ)→ (18.9, 53.1, 1.47× 10−6),Factor = 4.47, (78)

which suggests that the best profile under this assumed bending profile has no drift space,
contrary to the profile obtained by the evolutionary program in figure 1! However, the emittance
reduction factor is comparable; thus it is inconclusive to say which profile is the optimal one. The
FindMinimum function in Mathematica might simply not be able to distinguish between the two
cases of approximately equal numerical values, or the profile found by Mathematica might be
a local (not global) minimum, since the FindMinimum function works by the method of steepest
descent.

We therefore stress once again that we cannot conclude what the optimal bending profile for
the EME is, and perhaps a better piecewise analytic approximation to the green plot in figure 1
might allow the drift space to manifest itself in the optimization.

For now, we assume that λ = 0 for all κ, which greatly simplifies the expressions for the
normalized EME. The graphs of the emittance reduction factor together with the optimal r and L
are given below in figure 6(a), figure 6(b), and figure 6(c) respectively.

9 Sandwich dipole with reverse bending

In [1], the author considered a sandwich dipole in which the middle magnet was of constant
bending radius ρ0 and length L0, sandwiched between two magnets of constant bending radius
ρ1 and length L1, with ρ0 and ρ1 greater than 0, and derived the resulting normalized TME for
it. In this section we will generalize the set-up to include cases where the magnetic field can be
negative, but still keep it symmetric about the center. In this formalism, the set-up is very similar
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(a) Plot of 1/Normalized EME against κ. The fourth order
polynomial fit to the plot is −0.1460 + 1.718κ− 0.3128κ2 +
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(b) Plot of rmin against κ. The fourth order poly-
nomial fit to the plot is −0.8536 + 1.966κ +

0.08857κ2 − 0.003727κ3 + 0.00007364κ4.
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(c) Plot of Lmin against κ. The fourth order
polynomial fit to the plot is −0.8536 + 1.966κ +

0.08857κ2 − 0.003727κ3 + 0.00007364κ4.

Figure 6: Plots of various useful quantities of the approximation of the optimal EME profile against
κ.
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to that of the wiggler. Henceforth we shall use the term ‘wiggler’, which should really be read as
‘sandwich dipole with reverse bending’.

The relevant parameters defined for this set-up are as follows: µ ≡ ρ1/ρ0 and ν ≡ θ1/θ0, which
are the only 2 parameters needed. If θ is the total bending angle of the wiggler, then θ0 = θ/(1+2ν)

and θ1 = νθ/(1 + 2ν). Since ρ0 and ρ1 can take any real value, the parameter µ and ν can take
negative values too. One implication from the definitions is that

sgn(µ) = sgn(ν), (79)

which means after obtaining an expression for the normalized TME, FTME(µ, ν), we only con-
sider the first and third quadrants of the R2 plane of the parameters µ and ν.

Once again, the expressions obtained are rather complicated, and are given in the appendix
B. For now, we contend with two contour plots of the normalized TME of the first and third
quadrants in the R2 plane. Figure 7 shows the plots.

We note that there is a line of singularities in FTME(µ, ν), corresponding to ν = −1/2. This
corresponds to the case when the total bending angle is 0, and can be explained as such: in a
wiggler set-up where the total bending angle is 0, i.e. ν = −1/2, there is a finite but non-zero
TME, given by the expression in the appendix B. For the case of an ideal, uniform dipole in which
the bending angle is 0, the TME is obviously 0, and hence the ratio of a finite number over zero,
which is the normalized TME, is necessarily infinite.

As a check, we notice that the algebraic expression for the normalized TME reduces to that of
the sandwich dipole in the first quadrant, as it should, given in [1]. Also, if we let µ→ 1 or ν →∞,
the set-up reduces to that of the ideal dipole, and FTME(µ, ν) reduces to a value of 1.

10 Transfer matrix for linearly increasing bending profile

For completeness, we return to the case of approximation to the optimal bending profile for TME,
AME and EME, and attempt an exact solution instead of the approximation of the projected dis-
persion generating vector. This involves solving for the transfer matrix exactly and therefore re-
sults in an exact solution for the dispersion generating vector and projected dispersion generating
vector (if the expression is integrable). In the worst case scenario, the two functions will be given
in terms of quadratures.

The equation to be solved is the differential equation that the dispersion function satisfies:

η′′ +
1

ρ(s)2
η =

1

ρ(s)
, (80)

where now ρ(s) is ρ0(s − s0), a generic equation for a straight line. We also assume that the
transfer matrix is from a reference point s1 > s0 to s > s0, since the only solution for which the
transfer is from the point s0 is the null solution. Note that s0 cannot refer to the beginning of the
magnet, since ρ = 0 implies B = ∞, a physical impossibility. s0 is just one of the two variables
required to specify a straight line, and should not be confused with the starting point s1.
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Figure 7: Contour plots of the normalized TME for the wiggler in the first and third quadrant of
the R2 plane.

From inspection, the particular solution is

ηp(s) = ρ0(s− s0). (81)

For the general solution, we plug in an ansatz to the homogenous equation:

η(s) = (s− s0)α, (82)

which immediately gives the characteristic equation

α(α− 1) +
1

ρ20
. (83)

The solution to the dispersion equation is then:

η(s) =
√
s− s0

(
A1(s− s0)ω +A2(s− s0)−ω

)
+ ρ0(s− s0). (84)

with ω ≡
√

1/4− 1/ρ20.
Now set the initial conditions η1 ≡ η(s1) and η′1 ≡ η′(s1). We can eliminate the constants A1

and A2 in favor of η1 and η′1. Once this substitution is made, the function that is multiplied with
η1 is the matrix element m1(s), the function that is multiplied with η′1 is the matrix element m2(s)

and the function that does not have a factor or either is the dispersion generating function ξ(s).
The matrix elements are given by:
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m1(s) =
(s− s0)

1
2
−ω(−s0 + s1)

− 1
2
−ω ((s− s0)2ω(−1 + 2ω) + (−s0 + s1)

2ω(1 + 2ω)
)

4ω
(85)

m2(s) =
(s− s0)

1
2
−ω(−s0 + s1)

1
2
−ω ((s− s0)2ω − (−s0 + s1)

2ω
)

2ω
(86)

m′1(s) =
(s− s0)−

1
2
−ω(−s0 + s1)

− 1
2
−ω ((s− s0)2ω − (−s0 + s1)

2ω
)

(−1 + 4ω2)

8ω
(87)

m′2(s) =
(s− s0)−

1
2
−ω(−s0 + s1)

1
2
−ω ((−s0 + s1)

2ω(−1 + 2ω) + (s− s0)2ω(1 + 2ω)
)

4ω
, (88)

with the transfer matrix

M(s1|s) =

[
m1(s) m2(s)

m′1(s) m′2(s)

]
. (89)

The dispersion generating function is given by

ξs1(s) = −
ρ0

(
4(s0 − s)ω + (s− s0)

1
2
−ω(−s0 + s1)

1
2
−ω ((−s0 + s1)

2ω(−1 + 2ω) + (s− s0)2ω(1 + 2ω)
))

4ω
.

(90)
Expectedly, the Taylor series of m1(s),m2(s) and ξ(s) about s1 are:

m1(s) = 1 +
(−1 + 4ω2)(s− s1)2

8(s0 − s1)2
+O((s− s1)4) (91)

m2(s) = (s− s1) +
(−1 + 4ω2)(s− s1)3

24(s0 − s1)2
+O((s− s1)4) (92)

ξ(s) =
ρ0(−1 + 4ω2)(s− s1)2

8(s0 − s1)
+
ρ0(−1 + 4ω2)(s− s1)3

24(s0 − s1)2
+O((s− s1)4), (93)

which agree with our analysis before.

11 A variational approach to the optimization question

In this last section we present another take on the optimization of the minimum emittance ques-
tion. This section is still a work in progress, and the material presented here might be inaccurate
or even wholly incorrect. If so, the author apologizes for any errors and wishes that the reader
views this section as a speculative approach to the problem.

We start by noticing that the optimization problem involves selecting a bending profile ρ(s)

subject to certain constraints that will minimize the following expression:

〈〈H〉〉 =

1
L

∫ γ(s)η(s)2+2α(s)η(s)η′(s)+β(s)η′(s)2

|ρ(s)|3 ds

1
L

∫
1

ρ(s)2
ds

, (94)
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with α(s) ≡ −β′(s)/2 and γ(s) ≡ (1 + α(s)2)/β(s), where η(s) and β(s) obey the following
differential equations:

η′′(s) +
1

ρ(s)2
η(s)− 1

ρ(s)
= 0, and (95)

2β(s)β′′(s)− β′(s)2 +
4β(s)2

ρ(s)2
− 4 = 0. (96)

The variable 〈〈H〉〉 is a functional (as opposed to a function), which maps elements (functions,
in particular) (ρ(s) ∈ Vρ, η(s) ∈ Vη, β(s) ∈ Vβ) from the space Vρ × Vη × Vβ to a complex number
C. That is,

〈〈H〉〉 : Vρ × Vη × Vβ → C, (97)

subject to the constraints of the differential equations 95 and 96. Thus we hope to be able to use
the method of calculus of variations to obtain the functions ρ(s), η(s) and β(s) that will extremize
the functional 〈〈H〉〉.

Our first thought is to use the Euler-Lagrange equations, but we run into complications im-
mediately because the Euler-Lagrange equations are only valid for linear functionals; obviously
〈〈H〉〉 is not a linear functional and we cannot use such an approach, since it is a ratio of integrals.

It turns out that the theory of optimization of a product of integrals is already a well-studied
one, though it is probably not ubiquitously known to the general scientific population. In particu-
lar, areas such as the study of the aerodynamics of ballistics frequently deal with the minimization
of the product of powers of several integrals. Papers such as [5], [6], and [7] provide the necessary
background to deal with such a scenario. Here we shall give an overview and only state the steps
involved in computing the minimization of the product of integrals. Little effort has been made to
justify or prove the formulas.

We begin with the functional

I =

n∏
k=1

Ik
αk , (98)

where is the product of n integrals

Ik =

∫ xf

xi

fk(x, y, y
′)dx, k = 1, ..., n. (99)

The integrals Ik are assumed to be positive, and αk are given, positive or negative. We also
assume that the initial and final points are given:

xi = k1, yi = k2, xf = k3, yf = k4. (100)

The minimization of equation 98 is equivalent to the minimization of ln(I) since the logarithm
is monotonic in nature. Therefore the minimization of equation 98 is achieved at the minimum of
the (linear) functional
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ln(I) =

n∑
k=1

αk ln(Ik). (101)

The introduction of the n auxiliary variables zk defined by

z′k − fk(x, y, y′) = 0 ∀ k (102)

together with the initial conditions

(zk)i = 0 ∀ k =⇒ (zk)f = Ik ∀ k, (103)

allows us to rewrite equation 101 as

ln(I) =
n∑
k=1

αk ln((zk)f ). (104)

This is a problem of the Mayer type; one minimizes equation 104 together with the constraints
equation 102, and the boundary conditions. We can include the constraints by use of Lagrange
multipliers, thus converting the Mayer type problem to a Bolza problem [8]:

Ĩ = G((zk)f ) +

∫ xf

xi

F (x, y, y′, z′k, λk)dx, (105)

where

G((zk)f ) ≡
n∑
k=1

αk ln((zk)f ), (106)

and

F ≡
n∑
k=1

λk(fk − z′k). (107)

Note that F is formally equals to 0.
We can now employ the Euler-Lagrange equation to 105, to obtain n+ 1 equations

d

dx

∂F

∂z′k
=
∂F

∂zk
, ∀ k, (108)

and one equation

d

dx

∂F

∂y′
=
∂F

∂y
. (109)

From the above two equations, the Lagrange multipliers are seen to be all constant:

λ′k = 0 ∀ k, (110)

while
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d

dx

∂f

∂y′
=
∂f

∂y
, (111)

where

f ≡
n∑
k=1

λkfk (112)

is called the fundamental function. We note that if ∂f/∂x = 0, then by the Beltrami identity
f − y′(∂f/∂y′) = Constant.

The 2n+1 differential equations (n from the defining equation of zk, n from the Euler-Lagrange
equation w.r.t. zk, and 1 from the Euler lagrange equation w.r.t. y), have to satisfy the so-called
‘transversality condition’:

δG+

[(
F − y′∂F

∂y′
−

n∑
k=1

z′k
∂F

∂z′k

)
δx+

∂F

∂y′
δy +

n∑
k=1

∂F

∂z′k
δzk

]f
i

= 0 (113)

and in addition the Weierstrass condition

∆F − ∂F

∂y′
∆y′ −

n∑
k=1

∂F

∂z′k
∆z′k ≥ 0, (114)

for any set of variations ∆y′ and ∆z′k consistent with equation 102.
Since we have 2n + 1 differential equations, 2n of which are first order and one is of second

order, and one is of second order, we need 2n + 2 + 2 conditions to specify one solution. 2n of
these conditions are required by the 2n first order equations, 2 are required by the one second
order equation and 2 are required to specify xi and xf . Indeed we see that n conditions are given
by equation 103, 4 by equation 100, and n by equation 113. Thus a solution, if it exists, is uniquely
defined.

We can hope to adapt this method of the minimization of the functional 〈〈H〉〉. Now though,
each integrand Ik has not only x, y, y′ in its argument, but second derivatives and additional terms:

Ik =

∫ L

0
fk(s, ρ, η, η

′, η′′, β, β′, β′′)ds. (115)

We can employ the same method, and define the fundamental function

f = λ1

(
γ(s)η(s)2 + 2α(s)η(s)η′(s) + β(s)η′(s)2

|ρ(s)|3

)
+ λ2

(
1

ρ(s)2

)
+ λ3

(
η′′(s) +

1

ρ(s)2
η(s)− 1

ρ(s)

)
+ λ4

(
β(s)β′′(s)− β′(s)2 +

4β(s)2

ρ(s)2
− 4

)
(116)
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where λ1, ...λ4 represent the lagrange multipliers that are to be determined after a solution has
been obtained. The Euler-Lagrange equations for a functional L(x, y, y′, y′′) that involves deriva-
tives up to second order now take the form

∂L

∂y
− d

dx

∂L

∂y′
+

d2

dx2
∂L

∂y′′
= 0, (117)

and presumably the transversality condition and the Weierstrass condition have to be modi-
fied accordingly too. Thus one sees that theoretically it is possible to obtain a direct solution for
ρ(s), η(s), β(s) using the method of calculus of variations. Unfortunately the differential equations
are of high order (≤ 3) and have complicated expressions, and so the possibility of an analytic ex-
pression is almost nil. We admit that the variational method probably gives little or no insight
at all in the optimization problem. Thus, we reiterate that we hope the reader views this section
merely as another method of looking at the same optimization problem for completeness.

12 Conclusion

In this paper, we have successfully approximated the optimal bending profiles for TME, AME and
EME with piecewise analytic function, and derived analytic expressions for A and c for all three
cases. Using those expressions, we obtained numerical values for the optimal emittance reduction
factor, and for various parameters describing the optimal bending profiles. We also employed
the method to the case of a wiggler, and obtained analytic expressions for the normalized (TME)
emittance reduction factor. In additional to that, we derived an expression for the transfer matrix
of a bending profile that was linear in nature: ρ(s) = ρ0(s−s0). Lastly, we considered a variational
approach to the minimization of 〈〈H〉〉 and concluded that while it might be theoretically possible
to obtain a solution from such an approach, it is probably too complicated and intractable to have
any practical value to the problem of emittance reduction.
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Appendix

A Expressions for minimal TME

In this section we present the expressions obtained in section 6.

To simplify the algebra, we define the variables
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x ≡ −1 + r2 (118)

y ≡ −1 + r (119)

z ≡ ln(r). (120)

Then the normalized TME is given by:

FTME(g, r) =
1

4
√

2

√
f1f2
f3

, (121)

where

f1 ≡ 4g3r2 + 6g2x+ 6g(x− 2z) + 3(x− 2z(1 + z)), (122)

f2 ≡ 16g6r4 + 48g5r2x+ 120g4r2(x− 2z) + 45
(
(1− 6r − 23r2)y2 + 4r2(−6 + 4r + 2r2 − z)z

)
+ 60g3r2(3− 8r + 5r2 − 2z − 6z2) + 45g2

(
(1 + 2r + 17r2)y2 − 32r2yz + 12r2z2

)
+ 90

(
−1 + 4r − 4r2(3 + z) + 4r3(7 + 2z) + r4(−19 + 8z)

)
, and (123)

f3 ≡ r2
(
−1 + (1 + 2g)r2

)
(gr + y)2(g + z)6. (124)

If we now eliminate g in favor of λ (defined in section 6) via

g(r, L) ≡ r − 1

L− 1
and (125)

L(λ, r) =
λ (1− r + ln(r))

1− r + λ ln(r)
, (126)

then the normalized TME becomes:

F̃TME(λ, r) =

√
f4f5
f6

, (127)

with

f4 ≡
(
(−1 + r)

(
4r4 + 2r3(−7 + 3λ) + 2r2(8− 9λ+ 3λ2)

+3(−5 + 9λ− 5λ2 + λ3) + 3r(1 + λ− 3λ2 + λ3)
)

−6
(
−3− 2r(−1 + λ) + 4λ+ 2r4λ+ 2r3(−3 + λ)λ− λ2 + r2λ(5− 4λ+ λ2)

)
ln(r)

+6
(
1− λ+ r2(−3 + 2r)λ2 + r2λ3

)
ln(r)2 − 4r2λ3 ln(r)3

)
, (128)
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f5 ≡
(
(−1 + r)2

(
16r8 − 270r(−1 + λ)5λ+ 45(−1 + λ)4λ2 + 16r7(−7 + 3λ)

+24r6(15− 16λ+ 5λ2) + 4r5(−175 + 369λ− 285λ2 + 75λ3)

+r4(1465− 5304λ+ 6930λ2 − 3840λ3 + 765λ4)

−6r3(1 + 239λ− 1120λ2 + 1780λ3 − 1185λ4 + 285λ5)

−3r2(401− 2496λ+ 6475λ2 − 8700λ3 + 6315λ4 − 2340λ5 + 345λ6)
)

−6(−1 + r)
(
16r8λ− 45r(−1 + λ)5λ+ 15(−1 + λ)4λ2 + 8r7λ(−13 + 5λ)

+8r6λ(37− 35λ+ 10λ2) + 2r5(20− 267λ+ 445λ2 − 305λ3 + 75λ4)

+r4(220− 679λ+ 350λ2 + 560λ3 − 570λ4 + 135λ5)

−5r2(12− 121λ+ 439λ2 − 672λ3 + 468λ4 − 135λ5 + 9λ6)

−5r3(52− 215λ+ 259λ2 − 204λ3 + 276λ4 − 237λ5 + 69λ6)
)

ln(r)

+15
(
16r8λ2 + 32r7(−3 + λ)λ2 + 3(−1 + λ)4λ2 + 48r6λ2(5− 4λ+ λ2)

−12r3λ(2− 43λ+ 65λ2 − 5λ3 − 31λ4 + 12λ5) + 4r5(6− 2λ− 85λ2 + 119λ3 − 69λ4 + 15λ5)

+2r2λ(40− 243λ+ 374λ2 − 168λ3 − 30λ4 + 27λ5)

+r4(−36 + 96λ− 393λ2 + 688λ3 − 414λ4 + 72λ5 + 3λ6)
)

ln(r)2

−20r2λ
(
16r5λ2 + 24r4(−3 + λ)λ2 + 24r3λ2(5− 4λ+ λ2)

−3λ(−24 + 11λ+ 63λ2 − 71λ3 + 21λ4) + 6r(−9 + 3λ+ λ2 + 25λ3 − 28λ4 + 8λ5)

+r2(54− 90λ− 37λ2 + 111λ3 − 69λ4 + 15λ5)
)

ln(r)3

+60r2λ2
(
−9 + 32λ2 + 4r4λ2 + 4r3(−3 + λ)λ2 − 32λ3 + 9λ4 + 2r2λ2(5− 4λ+ λ2)

+r(18− 38λ+ 26λ2 − 6λ3)
)

ln(r)4 − 24r2λ3
(
15− 35λ+ (27− 6r2 + 4r3)λ2

+(−7 + 2r2)λ3
)

ln(r)5 + 16r4λ6 ln(r)6
)
, (129)

and

f6 = 32r2(1− r + ln(r))6 ((−1 + r)(−1 + r + λ)− rλ ln(r))2×(
(−1 + r)

(
−1 + 2r2 + r(−1 + λ) + λ

)
− 2r2λ ln(r)

)
. (130)

B Expressions for sandwich dipole with reverse bending

In this section, we present the final expressions for the case of the wiggler.
The un-normalized TME for the wiggler is just 2

√
|A|(1− c), and is given by:

FTME(µ, ν, L1, ρ0) =
L3
1

|ρ0|3
L(µ, ν), (131)

where
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L(µ, ν) ≡ 2

√
f7(f8 + f9)

f10
, (132)

with

f7 ≡ µ2
(
2µν(3 + 6ν + ν4) + |µ|3

)
(133)

f8 ≡ 4µ2ν4(15 + 30µν + 16µ2ν2) (134)

f9 ≡ 4µν
(
3 + 15ν + 10(3 + µ)ν2 + 45µν3 + 18µ2ν4

)
|µ|3 + |µ|6 (135)

f10 ≡ 153(µ+ 2ν)2(1 + 2µν)6|µ|6(2µν + |µ|3). (136)

For the case when the total bending angle is 0, ν = −1/2. Putting it in into the equation above
reduces it to:

FTME(µ,L1, ρ0) =
L3
1

|ρ0|3

√
µ2 (µ2(15− 15µ+ 4µ2) + µ(−24 + 25µ− 9µ2)|µ|3 + 4|µ|6)

540(−1 + µ)8|µ|6
, (137)

which is positive and finite for µ < 0. Note that we cannot consider µ > 0, because of the
necessary condition sgn(µ) = sgn(ν).

The normalized TME for the wiggler is given by:

FTME(µ, ν) =

√
f7(f8 + f9)

f11
, (138)

with

f11 ≡ (1 + 2ν)6(µ+ 2ν)2|µ|6(2µν + |µ|3). (139)

C Bound for c

In this section, we prove the following statement about c:

Theorem C.1. c lies between the range 0 to 1. That is, 0 ≤ c ≤ 1.

Before we present the proof, we note that |A| > 0. The proof of that fact is as follows. Since

|A| ≡ |〈〈~ξ~ξT 〉〉|

=

∫ ξ2

|ρ|3ds∫
1
ρ2
ds

∫ ξ′2

|ρ|3ds∫
1
ρ2
ds

−
∫ ξξ′

|ρ|3ds∫
1
ρ2
ds

2

, (140)
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by firstly the Cauchy-Schwartz inequality∣∣∣∣∫ f(s)ḡ(s)ds

∣∣∣∣2 ≤ (∫ |f(s)|2ds
)(∫

|g(s)|2ds
)
, (141)

with f(s) = ξ(s)/|ρ(s)|3/2 and g(s) = ξ′(s)/|ρ(s)|3/2 (equality only holds if and only if f(s) =

g(s)), and secondly the fact that ∫
1

ρ2
ds ≥ 0, (142)

and thirdly ξ(s) 6= ξ′(s), we see that

|A| > 0, (143)

since equality is never reached.

Proof. We prove first the lower bound of c. The c parameter is defined as −Tr(JAJB)/|A|, which
we can write out explicitly to be:

c =
〈〈ξ2〉〉(〈〈ξ′〉〉)2 + 〈〈ξ′2〉〉(〈〈ξ〉〉)2 − 2〈〈ξξ′〉〉〈〈ξ〉〉〈〈ξ′〉〉

ρ̌|A|
. (144)

The denominator is obviously greater than 0, and we note that the numerator can be written
as:

c =
[
〈〈ξ′〉〉 −〈〈ξ〉〉

] [ 〈〈ξ2〉〉 〈〈ξξ′〉〉
〈〈ξξ′〉〉 〈〈ξ′2〉〉

][
〈〈ξ′〉〉
−〈〈ξ〉〉

]
. (145)

Since the matrix in the middle is precisely |A|, which we see to be a positive definite matrix
(|A| > 0 and A22 > 0), the expression 145 is always greater than 0.

Now we prove the upper bound of c.
We define an operation on the space of real integrable functions on the compact interval of the

real line[0, L]:

(u, v) ≡ 〈〈uv〉〉 − 〈〈u〉〉〈〈v〉〉
ρ̌

. (146)

This expression is symmetric: (u, v) = (v, u), linear in the first argument: (au, v) = a(u, v) and
(u+ w, v) = (u, v) + (w, v) and it is semi-positive definite: (u, u) ≥ 0 for all u.

The first two properties are obvious, and the third one is true because

(u, u) ≡ 〈〈u2〉〉 − 〈〈u〉〉〈〈u〉〉
ρ̌

=

∫
u2

|ρ|3ds∫
1
ρ2
ds
−

(∫
u
|ρ|3ds

)2∫
1
|ρ|3ds

∫
1
ρ2
ds
, (147)
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and we invoke the Cauchy-Scwartz inequality again with f(s) = u(s)/|ρ(s)3/2| and g(s) =

1/|ρ(s)3/2| to get

(u, u) ≥ 0. (148)

The operation we have defined is a semi-inner product, so named because the inner product
is only semi-positive definite and not positive definite. That is, there exists a non-zero u such that
(u, u) = 0. This is satisfied for u = 1: (1, 1) = 0.

The Cauchy-Scwartz inequality still holds for a semi-inner product, that is:

(u, v)2 ≤ (u, u)(v, v). (149)

The proof of this can be found in a standard analysis textbook. Let u and v be vectors in the
vector space defined above, and let t be a real scalar.

0 ≤ (u+ tv, u+ tv)

= (u, u) + 2t(u, v) + t2(v, v). (150)

Since this is a polynomial in t, and it is always greater than or equals to 0, its discriminant must
be less than or equals to 0:

4(u, v)2 − 4(u, u)(v, v) ≤ 0, (151)

the desired result.
Letting u = ξ and v = ξ′ and a rearrangement of terms in the inequality on this semi-inner

product (making use of the form of c in 144) then yields

c ≤ 1. (152)
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