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Abstract

The presented Mathematica package is an upgrade of the Mathematica package PCR pre-
sented by B. Azadegan [1]. The purpose of the package is to accurately and efficiently calculate
the characterizing features of planar channeling radiation of relativistic electrons along major
crystallographic planes of diamond, silicon, and germanium crystal. The package is based on
the quantum theory of electron channeling as written by Azadegan in his dissertation which has
been successfully applied to model planar channeling of electrons at energies between 10 and 100
MeV [2]. It will be shown that the PCR code is successful in calculating peak photon energies,
but fails to generate accurate spectral linewidths and photon yields. The presented package
adopts the successes of the PCR code: calculation of the continuum potentials for different
planes of diamond, silicon, and germanium crystals; numerical solution of the one-dimensional
Schrödinger equation; and calculation of the transition probabilities between channeling states.
The package improves upon the spectral linewidths generated by the PCR code by including
the effects of multiple scattering of electrons and Bloch-wave broadening as well as calculating a
more accurate expression for the linewidth due to multiple scattering than is presented in Azade-
gan’s dissertation. Finally, the package generates more accurate photon yields by including the
dechanneling of electrons due to multiple scattering and the self-absorption of photons by the
crystal, and convolving the Lorentzian line-shape of the PCR code with a Gaussian line-shape.
The simulation of channeling radiation spectra is a useful tool in the comparison of theory with
experimental data.

1 Introduction

Since its prediction and first exact description of its features by M.A. Kumakhov in 1976, many
experiments have investigated the spectrum of channeling radiation (CR) of electrons in crystals.
Of direct interest to this project are two experiments that are set to take place at Fermilab over
the next year. The first of these, located at the A0 facility at Fermilab, will investigate the CR
spectrum of low-energy electrons (3-5 MeV) in a diamond crystal of 10-micron thickness. The
second, located at the Advanced Superconducting Test Accelerator (ASTA) facility at Fermilab,
will investigate CR due to medium-energy electrons with very low emittance.

The understanding of experimental CR data will be facilitated by an accurate and efficient
simulation code. The presented code builds upon the successes of the PCR package, written by
Azadegan, while addressing its discrepancies with previous calculations done by Azadegan (2).
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The product is a user-friendly Mathematica code that simulates planar CR of electrons in a single
diamond crystal.

2 Background Theory

Planar electron channeling is the steering of electrons through crystallographic planes. When
relativistic electrons are directed towards a randomly-oriented crystal, they are incoherently scat-
tered off of individual atoms, producing polychromatic bremsstrahlung radiation. Channeling oc-
curs when the electrons are directed nearly parrallel to a crystallographic plane or axis. In the
inertial frame of the electrons the planes appear continuous (instead of being composed of in-
dividual crystal atoms) and the electrons see a continuum interplanar potential in the direction
perpendicular (transverse) to their motion.

In the classical interpretation of electron channeling, the electrons oscillate within the continuum
potential. This approximation is valid for high electron energies (above 100 MeV) because the
number of bound quantum states becomes large and the electrons can be thought of as moving
continuously between them. At medium energies (between 10 MeV and 100 MeV), a quantum-
mechanical approach must be taken.

2.1 Peak photon energies

In the inertial frame of the electrons, the continuum interplanar pontential V (x) gives rise to a
one-dimensional Schrödinger equation that reads [1]

−~2

2γm

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (1)

where ~ is the Planck constant, m is the rest mass of the electron, and x denotes the transverse
direction perpendicular to crystal plane. Because the continuum potential is periodic (with the
periodicity of the crystal planes), the solutions to Eq. 1 are Bloch waves [1]

ψ(x) = eikx
∑
n

ck,ne
ingx (n = ...,−1, 0, 1, ...) (2)

where g = 2π
dp

is the reciprocal lattice vector of the plane in momentum space, dp is the distance
between adjacent planes, and k is the transverse crystal momentum.

The continuum potential can be expressed as a Fourier series [1]

V (x) =
∑
n

vne
ingx (n = ...,−1, 0, 1, ...) (3)

with Fourier coefficients vn calculated using the thermal-averaged Doyle-Turner approximation to
electron scattering. Substituting Eqs. 2 and 3 into Eq. 1 reduces the problem to calculation of
eigenvectors ck,n and eigenvalues εk,n which Mathematica handles very nicely.

In the frame of the electrons, the photon released in the transition from state i to state f at
crystal momentum k will have energy εk,i − εk,f . In the rest frame of the lab, a photon emitted in
the forward direction of the electrons will undergo a Doppler shift and have energy [1]

Ek,0 = 2γ2(εk,i − εk,f ) (4)

where γ is the relativistic gamma of the electrons. This is the peak photon energy for the i → f
transition.

2.2 Line broadening sources

The intrinsic CR line width is due to a combination of three main broadening effects.
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2.2.1 Coherence length

The first of these broadening sources is the finite lifetime of the bound states in the interplanar
potential. The lifetime is finite mainly due to thermal scattering or scattering off lightly bound
electrons in crystal atoms. The line shape that results is a Lorenzian with a width given by [2]

ΓCL =
2γ2~c
l

(5)

where γ is again the relativistic gamma of the electrons and l is the total coherence length given
by [2]

1

l
=

1

li
+

1

lf
(6)

where li and lf are the coherence lengths of the initial and final states of the transition being
considered.

Using the formalism of the complex potential, U(x) = V (x) + iW (x), the coherence length of
channeling state n is given by [1]

ln =
~βc

2〈ψk,n|W |ψk,n〉
(7)

where β = v/c and 〈ψk,n|W |ψk,n〉 is the expectation value of the imaginary part of the complex po-
tential for the state n. Thus, the expectation value of the imaginary potential, in part, characterizes
the lifetime of that state.
2.2.2 Multiple scattering

The other factor that partially determines the lifetimes of channeling states is the multiple
scattering of electrons off of crystal atoms. Multiple scattering of the electrons in the crystal
increases the beam divergence and leads to CR line broadening and asymmetry. The photon
energies have a Lorentzian distribution with respect to the scattering angle due Doppler shift that
reads

Eγ(θ) =
E0

1− β cos (θ)
≈ E0

1 + γ2θ2
(8)

where θ is the scattering angle and E0 is the peak photon energy of the transition.
The scattering angle of electrons has a Gaussian distribution with a standard deviation θms,ch

called the rms channeling multiple scattering angle, given by [2]

f(θ) =
1√

2πθms,ch
exp (

−θ2

2θ2ms,ch
) (9)

The photon energy is averaged over this Gaussian distribution in scattering angle, giving

〈Eγ〉 =
E0√

2πθms,ch

∫ ∞
−∞

exp (
−θ2

2θ2ms,ch
)

1

1 + γ2θ2
dθ. (10)

The line width due to multiple scattering is then given by

ΓMS =
√
< E2

γ > − < Eγ >2 (11)

It will later be shown that this expression is more accurate than the expression given by Azadegan
in his dissertation and can thus be seen not only as an improvement to the PCR code but also to
the thoery as a whole.
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2.2.3 Bloch-wave broadening

The eigenstates of the channeled electrons do not correspond to singular energy eigenvalues.
Instead, each eigenstate has an energy band (or range) that depends on k, the crystal momentum.
Within each band, the crystal momentum lies within the range −π/dp ≤ k ≤ π/dp and the
maximum and minimum energies in a band occur at kmax = π/dp and k0 = 0 (not necessarily
respectively).

The energy bands allow for CR line broadening because the energies of the initial and final
states for any given transition are not well-definied. The broadening that occurs is called Bloch-
wave broadening and for small observation angles, it is given by the Doppler-shifted sum of the
band widths of the initial and final states [2].

ΓBW = 2γ2(|εk0,i − εkmax,i|+ |εk0,f − εkmax,f |) (12)

2.2.4 Other line broadening sources

Another possible source of line broadening is the energy spread of the beam. The energy E0 of
a CR peak scales with the energy of the beam Ee like [2]

Eγ ∝ γa (13)

where a is a constant that ranges between 1.5 and 2 depending on the transition being considered.
The photon energy spread resulting from an initial beam energy spread is given by [2]

∆Eγ
Eγ

= a
∆Ee
Ee

(14)

If the energy spread of the beam is small then this effect is neglgible.
One final line broadening source is the resolution of the photon detector being used in an

experiment. In general, the width of the response function of the X-ray detector significantly
contributes to the CR line width. This source of line broadening may be added to the Mathematica
package at a later date.
2.2.5 Line shape and total line width

The line broadening due to coherence length and Bloch-wave broadening are Lorentzian in
shape. The shape of the multiple scattering effect (and the detector resolution effect for a Gaussian
response function) is Gaussian. Therefore, the total line width of the CR peak cannot be simply
calculated as a linear sum nor as a quadratic sum. This being said, the total line width is often
estimated by summing the partial line widths in quadrature, such as [2]

Γ2 = Γ2
CL + Γ2

MS + Γ2
BW (+Γ2

DR) (15)

where ΓDR is the partial line width due to the detector resolution.
The CR line shape that results from the convolution of Lorentzian and Gaussian profiles is

called a Voigt profile. The total line shape is given by the probability function [2]

P (Eγ) = π−3/2
∫ ∞
0

t−1/2(ΓT /2)(1 + 2α2t)e−t

(Eγ(1 + 2α2t)− E0)2 + 0.25(1 + 2α2t)2Γ2
T

dt (16)

where Eγ is the peak photon energy at scattering angle θ, E0 is the maximum photon energy at
θ = 0, ΓT is the linear sum of the partial linewdiths due to coherence length and Bloch-wave
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broadening and α = γθms,ch is determined by the beam energy and the rms channeling multiple
scattering angle.

2.3 Photon yield

The photon yield (intensity) of the i→ f transition is the number of photons per steradian per
electron, given by [2]

dN(i→ f)

dΩ
=

∫
line

d2N(i→ f)

dΩdEγ
dEγ (17)

where, according to Azadegan, the number of photons per steradian per electron and per photon
energy is given by [2]

d2N(i→ f)

dΩdEγ
=
α0λ

2
c

π~c
E0(i→ f)|〈ψf |

d

dx
|ψi〉|2

∫ L

0
exp (−µ(Eγ)(L− z))Pi(z)dz

× π−3/2
∫ ∞
0

t−1/2(ΓT /2)(1 + 2α2t)e−t

(Eγ(1 + 2α2t)− E0)2 + 0.25(1 + 2α2t)2Γ2
T

dt (18)

where α0 is the fine structure constant, λc is the Compton wave length, E0(i → f) is the peak
photon energy of the transition, 〈ψf | ddx |ψi〉 is the dipole matrix element, the first integral describes
the population dynamics of state i with µ(Eγ) the absorption coefficient of X-rays of energy Eγ ,
and the second integral describes the line shape of the CR peak.
2.3.1 Dipole matrix elements

The dipole matrix element determines the transition strength between the states. The Bloch-
waves, normalized to one interval of planes is given by [2]

ψi(x) =
1√
dp
eikx

m∑
n=−m

cine
ingx (19)

where cin are the eigenvectors of the system, calculated by Mathematica, and satisfying [2]

m∑
n=−m

(cin)∗cin = 1 (20)

Therefore, the dipole matrix element for the i→ f transition reads

〈ψf |
d

dx
|ψi〉 =

i2π

dp

∑
n

(cfn)∗cin(ng + k) (21)

2.3.2 Population dynamics

The occupation Pi(z) of channeling state i at crystal depth z depends on the initial population
of the state as well as scattering processes that populate and depopulate the state. The initial
population of state i at incidence angle φ is given by the square of the overlap of the Bloch-wave
with the electron plane wave, such as [2]

Pi,0(φ) = |〈ψi| exp (ikxx)〉|2 =
1

dp
|
∫ dp

2

− dp
2

ψi exp (ikxx)dx|2 (22)

where kx = pxφ/~ is the transverse momentum of the electron.
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For a more realistic simulation, the initial state populations can be averaged over the Gaussian
distribution in incident angle. The distribution of incidence angle, centered at φ0 is given by [2]

f(φ) =
1√

2πσφ
exp (

−(φ− φ0)2

2σ2φ
) (23)

where σφ is the beam divergence. Including the beam divergence in the calculation of the initial
state populations is an important improvement that is made in the Mathematica package.

For a small interval of crystal depth δz, the occupation advance of state i can be approximated
by [1]

Pi(z + δz) ∼= Pi(z) + δz
dPi(z)

dz
(24)

where dPi(z)
dz is determined by the transition rate per unit length between states i and j, Tj,i, such

as [2]
dPi(z)

dz
=

∑
j

Tj,i(Pj(z)− Pi(z)) (25)

where Tj,iPj(z) defines the feeding of state i, and Tj,iPi(z) defines the depopulation of state i. The
transition rates are defined by the overlap of the states i and j with the imaginary potential, such
as [1]

Tj,i = Ti,j =
2

~v
|〈ψj |W |ψi〉| (26)

2.3.3 Photon self-absorption

The final part of Eq. 18 left to be explained is the exponential term in the first inegral,
exp (−µ(Eγ)(L− z)), which describes the self-absorption of CR photons by the crystal. The ab-
sorption coefficient is defined by

µ(Eγ) =
1

labs(Eγ)
(27)

where labs(Eγ) is the absorption length of photons with energy Eγ . The absorption length also
depends on the channeled substance. In diamond crystal, values of the absorption coefficient are
well-defined and are listed in a database provided by the National Institute of Standards and
Technology [4].
2.3.4 Dechanneling of electrons due to multiple scattering

One important factor that is not included in Eq. 18 and does not show up in the PCR code is
the dechanneling of electrons due to multiple scattering in the crystal. Azadegan briefly addresses
the topic of dechanneling in his dissertation, stating that the exponential term is only valid for thin
crystals (less than 10 microns) while a fit of experimental photon yield data vs. crystal depth z
reveals that the state populations more closely follow a z−1/2 dependence for all crystal thicknesses
[2]. Azadegan goes on to state that this dependence can be shown but the authors have yet to find
proper theoretical justification. In any case, the dechanneling of electrons is a very important factor
in determining the photon yield of a CR peak and must be included in any accurate simulation.

3 Comparing PCR with theory and experiment

Before the PCR code could be improved, its discrepancies with Azadegan’s theoretical calcula-
tions and experimental data had to be diagnosed and understood. The first step in this process was
to compare calculations by the code of the three main spectral characteristics (photon energy, line
width, and photon yield) with the calculations and experimental data in Azadegan’s dissertation.
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In his dissertation, Azadegan calculates and cites experimental measurements for beam energies
and crystal thicknesses of 14.6 MeV: (42.5, 168, 500) microns, 17 MeV: (42.5, 102, 168, 500) microns,
30 MeV: (42.5, 102, 168, 500) microns, and 34 MeV: 42.5 microns for the 1→0 transition in the
(110) plane of a single diamond crystal. The PCR code was used to calculate the photon energies,
linewidths, and yields of the same transition for beam energies of 5.2, 9, 14.6, 17, 21, 25, 30, and
34 MeV and crystal thicknesses of 42.5 and 168 microns each (except for 34 MeV for which only
42.5 micron-thick diamond was considered).

3.1 Peak photon energy

Figure 1: Peak photon energy comparison of PCR code with Azadegan’s calculations and mea-
surement for the 1→0 transition in the (110) plane of diamond, 42.5 microns thick. The PCR
calculations closely match both Azadegan’s calculations and experimental data.

Table 1: PCR, calculated, and measured peak CR photon energies of the 1→0 transition in the
(110) plane of diamond.

L (µm) EPCR(k0) (keV) Ecalc (keV) Eexp (keV)

14.6 MeV

42.5 17.01 17.06 16.58

168 17.01 17.06 16.99

17 MeV

42.5 22.17 22.23 21.72

168 22.17 22.23 21.42

30 MeV

42.5 59.34 59.49 56.19

168 59.34 59.49 56.22

34 MeV

42.5 73.57 73.78 70.02

The calculated peak photon energies from the PCR code (for crystal momentum k0 = 0) are
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compared with the calculations and experimental data from Azadegan’s dissertation. The peak
photon energies do not change significantly with crystal momentum so k0 was chosen by default.
Fig. 1 shows the peak photon energy (keV) vs. beam energy (MeV) for the (110) plane of 42.5-
micron-thick diamond and Tab. 1 displays all comparison data for the peak photon energy. It
is important to note that in Fig. 1 and Tab. 1 as well as the following comparison plots and
tables, the label ”Theory” or subscript ”calc”represents the calculations done by Azadegan based
on the theory written in his dissertation and ”Experiment” or ”exp” represents the experimental
measurements cited in his dissertation [2].

It can be seen from Tab. 1 that the peak photon energies are independent of crystal thickness.
The PCR data differs from Azadegan’s claculations by a maximum of 5 percent. This is satisfactory
and there was no need to make alterations to the portions of the PCR code involved in calculating
peak photon energies.

3.2 Total line width

The PCR code prints out the total CR line width for each transition at the completion of a sim-
ulation. In Fig. 2 and Fig. 3, the PCR-calculated total line widths (keV) for k0 are compared with
Azadegan’s calculations and measurements for 42.5- and 168-micron-thick diamond, respectively,
versus beam energy (MeV). Tab. 2 displays the comparison data.

Looking at Fig. 2 and Fig. 3, the first striking feature is that the PCR-calculated linewidths
are significantly lower than the theoretically-calculated linewidths. Tab. 2 presents another dis-
turbing feature - the PCR-calculated linewidths do not change with crystal thickness, but both the
theoretical calculations and measurements increase. Further investigation into the calculation of
linewidths in the PCR code were necessary to determine the source of the discrepancy.

Figure 2: Total line width comparison of PCR code with Azadegan’s calculations and measurement
for the 1→0 transition in the (110) plane of diamond, 42.5 microns thick. The PCR calculations
are significantly lower than both Azadegan’s calculations and experimental data.
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Figure 3: Total line width comparison of PCR code with Azadegan’s calculations and measurement
for the 1→0 transition in the (110) plane of diamond, 168 microns thick. The difference between
PCR calculations and both Azadegan’s calculations and experimental data has grown with increasing
crystal thickness.

Table 2: PCR, calculated, and measured CR line widths of the 1→0 transition in the (110) plane
of diamond.

L (µm) ΓPCR(k0) (keV) Γcalc (keV) Γexp (keV)

14.6 MeV

42.5 0.29 0.87 1.51

168 0.29 1.25 1.80

17 MeV

42.5 0.41 0.95 2.00

168 0.41 1.39 2.47

30 MeV

42.5 1.51 2.29 5.88

168 1.51 3.32 6.12

34 MeV

42.5 2.00 3.01 7.84

3.3 Photon yield

The PCR code also prints out the photon yield per steradian and per electron for each transition
at the completion of a simulation. At zero incidence angle, and zero crystal momentum, the n = 1
state is never populated and thus there are no photons emitted for the 1→0 peak. It is for this
reason that we consider the PCR-calculated photon yields at kmin = π/5dp instead of k0. Fig. 4
and Fig. 5 compare the PCR-calculated photon yields with Azadegan’s calculated and measured
photon yields for 42.5- and 168-micron-thick diamond versus beam energy, respectively. Tab. 3
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Figure 4: Photon yield comparison of PCR code with Azadegan’s calculations and measurement for
the 1→0 transition in the (110) plane of 42.5-micron-thick diamond. The PCR calculations are
significantly greater than both Azadegan’s calculations and experimental data and the discrepancy
increases with beam energy.

Figure 5: Photon yield comparison of PCR code with Azadegan’s calculations and measurement for
the 1→0 transition in the (110) plane of 168-micron-thick diamond. The difference between PCR
calculations and both Azadegan’s calculations and experimental data has grown with increasing
crystal thickness.
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Table 3: PCR-calculated, theoretically-calculated, and measured CR photon yields of the 1→0 tran-
sition in the (110) plane of diamond.
L (µm) YPCR(kmin) (photons/e sr ∗10−3) Ycalc (photons/e sr ∗10−3) Yexp (photons/e sr ∗10−3)

14.6 MeV

42.5 111 112 48

168 440 223 90

17 MeV

42.5 162 148 59

168 645 295 130

30 MeV

42.5 658 448 229

168 2645 890 520

presents the comparison data.
The PCR-calculated photon yields clearly overestimate the theoretical data and the discrepancy

with Azadegan’s data increases with both beam energy and crystal thickness. Fig. 6 shows a log-log
fit of the photon yield data versus the beam gamma for 42.5-micron-thick diamond. Fitting Fig.
6, as well as data for 168-micron crystal thickness, reveals that the PCR photon yields increase
approximately like γ2.5, while the theoretical photon yields increase like γ1.93 and the measured
yields increase approximately like γ2.3.

Figure 6: Log-log photon yield comparison of PCR code with Azadegan’s calculations and measure-
ment vs. beam gamma for the 1→0 transition in the (110) plane of 42.5-micron-thick diamond.
The slope for PCR is greater that Azadegan’s theory but about the same as his measurements.

A similar analysis was done on the photon yield data versus crystal thickness. Fig. 7 is a log-log
fit of the photon yields versus crystal thickness for a 17 MeV electron beam. The PCR photon
yields are very nearly proportional to L while the theoretically-calculated yields are proportional to
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√
L and the measured yields increase approximately like L.63. The discrepancy between the PCR-

calculated photon yields and the theoretically-calculated yields cited in Azadegan’s dissertation
were troubling, especially with respect to the crystal thickness. Further investigation was necessary
to determine the source of the discrepancy.

Figure 7: Log-log photon yield comparison of PCR code with Azadegan’s calculations and measure-
ment vs. crystal thickness for 17 MeV electrons undergoing the 1→0 transition in the (110) plane
of diamond. The slope for PCR is nearly twice that of Azadegan’s theory and measurements.

4 Improving PCR

Before improvements to line width and photon yield calculations of the code could be made,
the sources of the discrepacies had to be understood. This required line-by-line comparison of the
PCR code with the theoretical framework presented in Azadegan’s dissertation. Only twice, in the
case of the partial linewidth due to multiple scattering and the dechanneling of electrons due to
occupation length, was the theory actually improved. In all other cases, Azadegan simply did not
include portions of the theory in the PCR code.

4.1 Fixing the line widths

In our comparison of PCR and theoretical calculations, it was shown that the PCR code signifi-
cantly underestimates the line widths of CR spectral peaks. Upon analysis of the code, it was found
that the PCR package only considers line broadening due to coherence length. In order to improve
the code, calculation of partial line widths due to multiple scattering and Bloch-wave broadening
were included. These three partial line-widths were then added in quadrature to give the total line
width.

Including the Bloch-wave broadening was straightforward by use of the theory presented in Sec.
2.2.3. Including the line width due to multiple scattering was not quite as simple.
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4.1.1 Improving the line width due to multiple scattering

In Azadegan’s dissertation he states that the Doppler broadening of planar CR due to multiple
scattering can be evaluated by [2]

ΓDopp = γ2θ2ms,chE0 (28)

This is merely an approximation to the formulation

ΓMS =
√
〈E2

γ〉 − 〈Eγ〉2 (29)

presented in Sec. 2.2.2.
Interestingly, ΓMS is greater than ΓDopp for approximately θms,ch < 10mrad, depending on the

beam energy. This can be seen in Fig. 8.

Figure 8: ΓMS (red) and ΓDopp (dashed) normalized by peak photon energy vs. θms,ch for the
1→0 transition of 17 MeV electrons channeled in the (110) plane of diamond. ΓMS > ΓDopp for
approximately θms,ch < 10mrad.

In general, the rms multiple scattering angles are less than the angle at the point of crossing of
ΓMS and ΓDopp (about 10mrad). Thus, the partial line width due to multiple scattering is actually
greater than Azadegan’s approximation by up to 10 percent. This difference is large enough to be
considered significant and decreases the difference between theory and experiment.

4.1.2 An expression for the rms channeling multiple scattering angle

In order to apply the improved ΓMS in the code, an expression for θms,ch is necessary. The rms
multiple scattering angle of electrons in amorphous media is given by [2]

θms = (
14MeV

Ee
)

√
z

L0
(1 + 0.038 ln

z

L0
) (30)
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where Ee is the beam energy, L0 is the radiation length (the path length after which the electron
energy is diminished by a factor of 1

e due to radiation losses), and z is the thickness of the layer.
For a randomly-oriented diamond crystal, the radiation length is 12.23 cm. Unfortunately, the
radiation lengths of diamond oriented along major crystallographic planes are not well-known.
However, Azadegan obtains θms,ch by fitting CR lines measured for the 1→0 transition of electrons
channeled in the (110) plane of diamond. The values are listed in Tab. 4 [2].

Table 4: Mean channeling multiple scattering angles obtained by fits of CR lines measured for the
1→0 transition in the (110) plane of diamond and ratios of the mean multiple scattering angles for
channeling to the mean multiple scattering angles for a randomly oriented diamond crystal.

Ee (MeV) θms,ch (mrad) θms,ch/θms
42.5 µm

14.6 6.03 0.55

17 5.32 0.56

30 2.87 0.54

34 2.60 0.56

102 µm

17 6.33 0.41

30 3.69 0.42

168 µm

14.6 8.62 0.36

17 6.91 0.33

30 3.84 0.33

500 µm

14.6 9.73 0.22

17 8.46 0.22

The next step was to fit the θms,ch data from Tab. 4 vs. beam energy and crystal thickness. In
his dissertation, Azadegan concludes that the dependence θms,ch ∝ 1/Ee holds as given by Eq. 30.
A log-log fit of the data verified this dependence. Fitting of a log-log plot of the θms,ch data against
crystal thickness gives a dependence of approximately θms,ch ∝ L.2. Finally, incorporating these
proportionalities and fitting the data one more time to find the scale factor gives an approximate
expression

θms,ch ≈ c
L0.2

Ee
(31)

where c = .083. Fig. 9 and Fig. 10 show the fitted expression versus beam energy and crystal
thickness, respectively, in comparison with θms,ch data from Tab. 4.

Eq. 31 provides an accurate expression for the mean multiple scattering angle for the (110)
plane of diamond. In order to approximate θms,ch for the (100) and (111) planes of diamond, and

possibly for germanium and silicon, fitting the ratio
θms,ch

θms
is more helpful. Calculating θms for

a randomly-oriented crystal is simple using Eq. 30 and multiplication with the ratio yields an
approximate θms,ch for the crystal. The accuracy of this approach must be verified, but it makes

the calculation of θms,ch more general. For this reason, the fitting of
θms,ch

θms
with crystal thickness

is one of the next steps in the project (it has already been shown that
θms,ch

θms
is constant with beam

energy since θms,ch ∝ θms ∝ 1/Ee).
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Figure 9: θms,ch obtained by fitting Tab. 4 and data from Tab. 4 vs. beam energy for electrons
channeled in the (110) plane of 42.5-micron-thick diamond.

Figure 10: θms,ch obtained by fitting Tab. 4 and data from Tab. 4 vs. crystal thickness for 17 MeV
electrons channeled in the (110) plane of diamond.

4.1.3 Total line width

Combining the partial line widths due to Bloch-wave broadening, multiple scattering, and co-
herence length, in quadrature like Eq. 15, gives the total line width. The partial line width due to
Bloch-wave broadening is calculated using Eq. 12. The line width due to multiple scattering is cal-
culated using Eq. 29, an improvement upon Azadegan’s calculation, using Eq. 28. The line width
due to coherence length is calculated by the PCR code using Eqs. 5-7. Figs. 11 and 12 compare the
updated total line widths with Azadegan’s calculations and measurements versus beam energy for
the CR peak corresponding to the 1→0 transition in the (110) plane of 42.5- and 168-micron-thick
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Figure 11: Line width comparison of updated total line width with Azadegan’s calculations and mea-
surement for the 1→0 transition in the (110) plane of 42.5-micron-thick diamond. The updated line
widths, including Bloch-wave and multiple scattering effects, are close to Azadegan’s calculations.

Figure 12: Line width comparison of updated total line width with Azadegan’s calculations and mea-
surement for the 1→0 transition in the (110) plane of 168-micron-thick diamond. The updated line
widths, including Bloch-wave and multiple scattering effects, are close to Azadegan’s calculations.
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Table 5: Updated total line width including Bloch-wave and multiple scattering effects, theoretically-
calculated, and measured CR line widths of the 1→0 transition in the (110) plane of diamond.

L (µm) ΓPCR(incl BW&MS) (keV) Γcalc (keV) Γexp (keV)

14.6 MeV

42.5 0.74 0.87 1.51

168 1.07 1.25 1.8

17 MeV

42.5 0.94 0.95 2.00

168 1.37 1.39 2.47

30 MeV

42.5 2.69 2.29 5.88

168 3.82 3.32 6.12

diamond, respectively, and Tab. 5 displays the data.
The updated total line widths, including Bloch-wave and multiple scattering effects, are very

close to the calculations cited in Azadegan’s dissertation. The existing difference with Azadegan’s
calculations is due to the improved expression for the multiple scattering linewidth and omission of
the line-broadening effect of the detector resolution (which Azadegan includes). It is expected that
the total line width will become closer to Azadegan’s measurements once the partial line widths of
detector resolution and beam energy spread are included.

4.2 Fixing the photon yields

Finding the sources of error in the photon yield calculations was more difficult than finding
those of the line width. Calculation of the photon yield of a CR peak, defined by Eqs. 17 and 18,
incorporates all of the CR theory discussed and is dependent upon almost every previous portion
of the PCR code.

By comparison of the PCR code with theory, it was determined that each part of the code
correctly fulfilled its intended purpose, leading to the conclusion that, again, Azadegan simply did
not include parts of the theory in his code. Using proper notation, the equivalent of Eq. 18 in the
code reads [3]

d2N(i→ f)

dΩdEγ
=
α0λ

2
c

π~c
E0(i→ f)|〈ψf |

d

dx
|ψi〉|2

∫ L

0
Pi(z)dz(π

−1 ΓCL/2

(Eγ − E0)2 + 0.25Γ2
CL

) (32)

The two glaring differences between Eq. 32 and Eq. 18 are the omission of the exponential factor
in the first integral, which defines the self-absorption of photons, and the replacement of the entire
second integral describing the convolved Lorentzian-Gaussian line shape, with a Lorentzian shape
of width ΓCL.
4.2.1 Including photon self-absorption

The exponential term exp (−µ(Eγ)(L− z)) seems straightforward to implement in the code. In
diamond crystal, values of the absorption coefficient range from .782 µm−1 for photons of 1 keV
to 2.24E-5 µm−1 for 1 MeV photons [4]. Using built-in Mathematica commands, an interpolation
function was created for µ(Eγ).

Upon implementation, it was found that for thin crystals (less than about 50 µm), the second
integral in Eq. 18 did not converge quickly enough and the program would crash. For thick crystals
the program ran smoothly, but the net effect was minimal. The photon yield calculations were
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decreased by about 2 to 3 percent, a far cry from the approximately 80 percent change necessary
for the code to be consistent with Azadegan’s photon yield calculations.

A final decision on whether or not to implement the self-absorption factor is pending. One
possibility would be to use a linear approximation to the exponential term, but this introduces an
error in the effect of about 50 percent.
4.2.2 Changing the line shape

In the PCR code, Azadegan uses a purely Lorentzian line shape because he only incorporates
line broadening due to coherence length. A more accurate expression for the line width, including
effects from Bloch-wave broadening (also Lorentzian in shape) and multiple scattering (Gaussian
shape), necessitates the use of a convolution of Lorentzian and Gaussian line shapes.

The second integral in Eq. 18 is the convolution of Lorentzian and Gaussian line shapes. It
is obtained by averaging a Lorenzian distribution in photon energy of width ΓT over a Gaussian
distribution in scattering angle of width θms,ch. The values of θms,ch in α in Eq. 18 are obtained
by use of the fit expression presented in Sec. 4.1.2.

The implementation of the new line shape was successful, but only decreased the photon yield
calculations by about 5 percent. Again, this is far from the approximately 80 percent drop needed to
explain the discrepancy with theory. This was troubling because even after the yield calculations
of the PCR code were altered to match Eqs. 17 and 18, they still did not match Azadegan’s
calculations.
4.2.3 Dechanneling of electrons due to multiple scattering

After the two obvious differences between Eqs. 18 and 32 were addressed, there was still a large
discrepancy between photon yield calculations by PCR and those cited in Azadegan’s dissertation.
A comparison showed no difference between the code and the theory cited by Azadegan. To be
thorough, a paper by Chouffani, cited extensively in Azadegan’s dissertation, was checked against
the theory in Azadegan’s dissertation [5]. It was found that Azadegan did not include the effect
of dechanneling of electrons in the theory he presents nor in his code, while Chouffani provides a
theoretical expression.

In the code, the population of the channeling state i at a given crystal depth, Pi(z), is calculated
using Eqs. 24-26. Eq. 25 accounts only for the depopulation of state i by nonradiative transition
to state j and population of state i from particles in state j. In this framework, there is no net
loss of electrons to dechanneling. Chouffani includes the dechanneling of electrons due to multiple
scattering off the crystal atoms by adding a second term in Eq. 25, such as [5]

dPi(z)

dz
=

∑
n

Tn,i(Pn(z)− Pi(z))−
∑
m

Tm,iPi(z) (33)

where the first term sums over the bound states and the second term sums over the unbound states.
Substituting Eq. 33 for Eq. 25 in the code was simple. Figs. 13 and 14 are comparisons of the

new photon yields, including dechanneling effects, with the calculations and measurements cited in
Azadegan’s dissertation for crystal thicknesses of 42.5 and 168 microns respectively. Tab. 6 shows
the data in Figs. 13 and 14.

Including the dechanneling effect, the photon yield calculations of the code are in close agreement
with Azadegan’s calculations and measurement, and almost exactly match Azadegan’s calculations
at beam energies around 20 - 22 MeV. Yet, it can be seen that the photon yield calculations of
the code with the dechanneling effect still increase too sharply with increasing beam energy. A full
analysis of the shape of the new photon yield calculations versus beam energy and crystal thickness
must be done.
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Figure 13: Photon yield comparison of PCR code, including dechanneling effects, with Azadegan’s
calculations and measurement for the 1→0 transition in the (110) plane of 42.5-micron-thick dia-
mond. The PCR calculations with dechanneling effects included are close to Azadegan’s calculations
and experimental data, but increase at a higher rate with beam energy.

Figure 14: Photon yield comparison of PCR code, including dechanneling effects, with Azadegan’s
calculations and measurement for the 1→0 transition in the (110) plane of 168-micron-thick dia-
mond. The PCR calculations with dechanneling effects included are close to Azadegan’s calculations
and experimental data, but increase at a higher rate with beam energy.
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Table 6: PCR-calculated, including electron dechanneling; theoretically-calculated; and measured
CR photon yields of the 1→0 transition in the (110) plane of diamond.
L (µm) YPCR(incl dech) (photons/e sr ∗10−3) Ycalc (photons/e sr ∗10−3) Yexp (photons/e sr ∗10−3)

14.6 MeV

42.5 78 112 48

168 140 223 90

17 MeV

42.5 116 148 59

168 217 295 130

30 MeV

42.5 513 448 229

168 1110 890 520

4.3 Including beam divergence

The PCR code assumes that the incoming electron beam has zero divergence; that is, the
electrons have the same angle of incidence with the plane. This is unrealistic. The incidence angles
of the electrons can be represented by a Gaussian function

f(θ0, σ, θ) =
1

σ
√

2π
exp (−(θ − θ0)2

2σ2
) (34)

where θ0 is the mean (expected) incidence angle and σ is the beam divergence.
The PCR code calculates the initial population, Pi,0(θ), of each quantum state i as a function of

the incidence angle. To include a realistic beam divergence, the state populations can be averaged
over the Gaussian function such as

Pi,0(θ0, σ) =

∫
f(θ0, σ, θ)Pi,0(θ) dθ∫

f(θ0, σ, θ) dθ
=

∫
f(θ0, σ, θ)Pi,0(θ) dθ (35)

where the integral can be taken over θ0 ± 5σ. Initially, Mathematica had difficulty performing the
integral in Eq. 35, but the authors have since resolved the issue.

5 Discussion

The progress made in improving the accuracy of the linewidth and photon yield calculations
of the PCR code is promsing, but not yet complete. In order to calculate accurate linewidths
for planes other than (110) and crystals other than diamond, a more general expression for the
rms multiple scatting angle for channeling must either be found or derived. The next step for the
authors will be to create a fit expression for the ratio θms,ch/θms using Azadegan’s data from Tab.
4. Then, calculating θms for different crystals will allow us to make a crude estimate of θms,ch for
those crystals. This should not be seen as the final step in the calculation of θms,ch for different
planes and crystals, and a more rigorous formulation should be sought.

Completing the photon yield updates will be more involved. Most importantly, the effect of
electron dechanneling must be implemented. It is already known that the PCR code miscalculates
the nonradiative transition rates (Eq. 26), because the selection rule is not consistent with the
theory presented in Chouffani’s paper. Namely, there should be nearly no non-radiative transitions
between states with opposite parity, but a number of such transitions are seen in the PCR code.
After the transition rates are fixed, an analysis of the accuracy of the first attempt (replacing Eq.
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25 with Eq. 33) must be done. Secondly, a decision on whether or not to include the effect of
photon self-absorption must be made. If it is decided that the effect is significant, then the issues
of implementing it in the code for small crystal thicknesses must be solved. Finally, in order to
calculate line shapes for crystals and planes other than the (110) plane of diamond, we must find
a more general expression for θms,ch, as mentioned above.

After the line width and photon yield calculations are finalized, other beam and detector effects
can be included. The divergene and energy spread of the beam were not included in the PCR code
and would have significant effects on the CR simulation. The beam divergence effects the initial
populations of quantum states and has been successfully implemented in the code, as described in
Sec. 4.3. The energy spread of the beam is a source of line broadening that should be simple to
include. The resolution of the detector is also a significant source of line broadening that will be
simple to implement.

6 Conclusion

The goal of this project was to create a code for the simulation of channeling radiation in single
crystals. The project consisted of three stages: 1) diagnosing the discrepancies between Azadegan’s
PCR code and the calculations that he cites in his dissertation, 2) understanding the sources of
the discrepancies, and 3) producing solutions to the issues that are found and including beam and
detector effects to make the simulations more realistic.

In diagnosing the discrepancies between the PCR code and Azadegan’s calculations, it was
found that the peak photon energies were consistent, but the PCR-calculated line widths were
significantly smaller than the line widths cited in Azadegan’s dissertation, and the PCR-calculated
photon yields were significantly larger than those calculated in his dissertation.

The source of error in the line width calculations was found quickly. In the PCR code, Azade-
gan only included the line-broadening effects of coherence length, ignoring the effects of Bloch-wave
broadening, multiple scattering, and other beam and detector effects that he describes in his dis-
sertation. The sources of error in the photon yield calculations were not as easily discerned. It was
quickly determined that Azadegan did not include the effect of photon self-absorption and used
a Lorentzian line shape instead of the appropriate Lorentzian-Gaussian convolution. After closer
inspection, it was also found that Azadegan did not include the effect of electron dechanneling due
to multiple scattering.

To fix the line width calculations, Bloch-wave broadening and multiple scattering effects were
included. For more realistic simulation, the detector resolution and energy spread of the beam will
be included as well. To fix the photon yields, photon self-absorption was included, the Lorentzian
line shape was replaced with a Lorentzian-Gaussian convolution, and the effect of electron dechan-
neling is in the process of being included in the state population dynamics. Finally, beam divergence
was added.

There remain obstacles to fixing some of the problems. A general expression for the rms multiple
scattering angle for channeling must be found in order to make accurate line width and line shape
calculations. A satisfactory understanding of the dechanneling effect must also be found in order
to fix the photon yields. Including the self-absorption of photons, the code will not run for small
crystal thicknesses. The simplest of the obstacles will be to add the effects of detector resolution
and energy spread of the beam.

Once these issues have been adressed, combining the improvements should be trivial and the
project will be complete. Combining improved line width and photon yield calculations with re-
alistic beam and detector effects should greatly improve the accuracy of the simulation code. An
accurate and easily-accessible package for the simulation of CR spectra will facilitate the under-
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standing of upcoming experiments at the A0 and ASTA facilities at Fermilab.
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