
Enhancement of Fabrication of Kirkpatrick-Baez (K-B) Mirror in APS via Improving
Metrology by Microscope Interferometer Stitching∗

Haoyu Sun†

Department of Physics, University of California, Berkeley, CA, 94720-7300, USA

Lahsen Assoufid (Supervisor)‡

Optics Group, X-Ray Science Division, Advanced Photon Source,
Argonne National Laboratory, Lemont, Il, 60439, USA

(Dated: August 19, 2013)

During the in-process fabrication of elliptical K-B mirrors from spherical substrates in Advanced
Photon Source (APS), Argonne National Laboratory, high-quality metrology plays an important
role. ADE MicroXAM RTS is a surface mapping microscope using a technique called phase-shifting
interferometry, but it is not designed to take measurements at highly tilted angle. Hence, we explored
the effect of the surface tilt angle on the accuracy of measurement. To better understand the ”black-
box” data processing program built in MicroXAM, a family of MATLAB codes are developed to
perform off-line data analysis, including calculations of root-mean-square (RMS) surface roughness
and peak-to-valley (PV) value, independent of MicroXAM. Mathematical principles and numerical
details are investigated; advantages of these codes are discussed.

Keywords: K-B mirror, Zernike polynomials, ordinary linear least square, MATLAB,
digital filter, signal processing.

CONTENTS

I. Introduction 1

II. Zernike Polynomials 2

III. An Ordinary Linear Least Square Problem 4
A. Gram-Schmidt Orthogonalization 5
B. Moore-Penrose Pseudoinverse Method 7
C. Numerical Double Integral in Cylinder

Coordinates 7

IV. Filtering Prior to Data fitting 8
A. Six Standard Deviation Threshold 8
B. Two Dimensional Savitzky-Golay Filter for

Data Smoothing 8

V. Implementation of Algorithms 11
A. Orthogonalization Algorithms (without

Filter) 12
B. Pseudoinverse Algorithms (with the

Threshold of Six Standard Deviation) 14
C. Pseudoinverse Algorithms (with

Savitzky-Golay Filter) 15
D. The Guided Algorithm 16

VI. Discussion 19

VII. Conclusion 22

∗ Submitted to Lee Teng Undergraduate Internship in Accelerator
Science and Engineering

† hkdavidsun@berkeley.edu
‡ assoufid@aps.anl.gov

VIII. Acknowledgments 23

IX. References 23

X. Appendices 24
A. List of the First 16 Zernike Polynomials in

Polar Coordinates [7] 24
B. List of the First 16 Zernike Polynomials in

Cartesian Coordinates 24

I. INTRODUCTION

Nanofocusing mirrors are very important to many
research applications requiring extremely small beams,
including nanofluorescence, nanodiffraction, and other
micro- and nano-imaging techniques.

In APS, we are trying to improve the fabrication of
K-B mirrors using the APS-developed thin film profile
coating technology to achieve 50-namometer focusing K-
B mirrors. A single K-B mirror is a reflective mirror; it
has a shape of an elliptical cylinder, and is used in pairs
to nanofocus the synchrotron radiation beam coming out
of an undulator (shown in Fig.1). The focusing system
contains one vertical and one horizontal K-B mirror. In
APS, the hard X-ray emerges from the standard insertion
device: Undulator-A, and at 8.0 keV it has source size:

Σx ∶ 273 µm, Σy ∶ 10 µm,

and divergence:

Σx′ ∶ 12.6 µrad, Σy′ ∶ 6.6 µrad,

Hence, the beam size is approximately 1 mm vertically
and 2 mm horizontally at 30 m meters from the source.

mailto:hkdavidsun@berkeley.edu
mailto:assoufid@aps.anl.gov

2

Manufacture of elliptical mirror is very costly (about
several thousand US dollars for a pair of mirrors and
their mounting system). It is less expensive to manu-
facture them by profile coating flat or preferably cylin-
drical substrates. The deposition is performed by an in-
process fashion as shown in Fig.1(b). The fabrication
machine receives feedback information about the surface
profile from metrology instruments. Hence, metrology
plays an important role in fabrication processes. Accu-
rate in-process metrology is essential to fabricate precise
elliptical mirrors.

Fabrication of K-B mirrors using elliptical coating re-
quires metrology tools that are capable of measuring fig-
ure errors at 1 Å level. Currently in APS we are using
ADE MicroXAM RTS shown in Fig.2, a microscope in-
terferometer with microstitching capability to measure
figure errors of mirror substrates and coating.

However, due to the principle of common path interfer-
ometry shown in Fig.3(a), the microscope works the best
only when the surface under test is flat or mildly curved.
Measurements of highly curved or tilted surfaces will af-
fect the accuracy of the results (Fig.3(b) & (c)) [1]. My
project is to study the magnitude of measurement errors
as a function of tilt angle/curvature of the surface to be
tested, and contribute to devising a method to correct
those errors within the limits of MicroXAM microscope
capabilities.

In order to build the model, we view the region of el-
liptical cylindrical mirror surface within the field of view
of MicroXAM RTS’ square aperture as an ”infinitesimal”
surface element and approximate it to be flat to the first
order as shown in Fig.1(c). Then the next step is to study
the relation between the tilting angles and measurement
errors due to tilting or curvature. We manually tilted
the flat Zerodur reference mirror to collect data on sur-
face height, and then use Zernike polynomials, numerical
analysis and signal processing to achieve the abovemen-
tioned objective.

II. ZERNIKE POLYNOMIALS

Zernike polynomials are first introduced and investi-
gated by Frits Zernike in 1934, and play an important
role in beam optics.

There are even and odd Zernike polynomials [2]. The
even ones are defined as

Zmn (ρ,ϕ) = Rmn (ρ, θ) cos(mϕ) (1)

and the odd ones are defined as

Z−m
n (ρ,ϕ) = Rmn (ρ, θ) sin(mϕ), (2)

where m and n are nonnegative integers with n > m,
ϕ is the polar angle, and ρ is the radial distance with
0 ≤ ρ ≤ 1. Rmn are called radial Zernike polynomials, and

(a) K-B Mirror Configuration

(b) In-Process Fabrication

(c) Slopes on an Elliptical Surface

FIG. 1. (a) shows the focusing of X-ray by a pair of elliptical
K-B mirrors; (b) shows the feedback loop during in-process
fabrication; (c) shows the metrology configuration for an el-
liptical mirror.

are defined as a generating function:

Rmn (ρ) =
(n−m)/2

∑
k=0

(−1)k(n − k)!
k!((n +m)/2 − k)!((n −m)/2 − k)!

ρn−2k.

(3)

One important property of Zernike polynomials is or-
thogonality. Zernike polynomials are orthogonal in radial

3

FIG. 2. ADE MicroXAM RTS microstitching interferometer

parts:

∫
1

0
ρ
√

2n + 2Rmn (ρ)
√

2n′ + 2Rmn (ρ)dρ = δn,n′ , (4)

and are also orthogonal as a whole:

∫ Zmn (ρ,φ)Zm
′

n′ (ρ,φ)d2r =
εmπ

2n + 2
δn,n′δm,m′ , (5)

where d2r = ρdρdφ is the surface element of polar co-
ordinates, and εm is called the Neumann factor which is
defined as:

εm = {
2, if m = 0

1, otherwise
(6)

Another mathematical property of Zernike polynomi-
als called completeness enables them to approximate
an arbitrary surface with arbitrary accuracy. For this
project, it is plays a more significant role than orthogo-
nality does. The completeness could be sketchily proved
by Stone-Weierstrass theorem [3]. The original Weier-
strass theorem states that any single-variable function
which is continuous in the interval a ≤ x ≤ b may be
approximated uniformly by polynomials in this interval.
This theorem could be generalized to Stone-Weierstrass
theorem which deals with multivariable functions. The
real number version of it generalized the original result

(a) Common Path Interferometry

(b) Measurement with Presence of Tilting

(c) Measurement Errors Caused by Tilts

FIG. 3. The top figure shows the basic experimental con-
figuration of phase-shifting interferometry; the middle figure
shows the common scenario in which the flat mirror under
test is tilted by a certain angle; the bottom figure shows that
the root cause for measurement errors is the change of optical
path difference, as well as the deviation of the reflecting ray
from the incoming ray [1].

from the real interval [a, b] to any compact Hausdorff
space X, and can be used to proof the following state-
ment [3]:

If f is a continuous real-valued function defined
on the set [a, b] × [c, d] and ε > 0, then there
exists a polynomial function p in two variables
such that ∣f(x, y) − p(x, y)∣ < ε ∀x ∈ [a, b] and
y ∈ [c, d].

Rather than pointwise convergence, this statement as-
serts the positivity of uniform convergence, which implies
completeness.

The advantage and uniqueness of Zernike polynomials
are not only due to their orthogonality and complete-
ness, but also due to their being directly interpreted as

4

(a) Primary Astigmatism at 0°

(b) Secondary Astigmatism at 45°

FIG. 4. Two plotted examples of Zernike polynomials on
square domains.

Seidel optical aberrations (classical/physical aberrations)
[4]. Hence, they come in handy with respect to metrol-
ogy and measurement. In order to appreciate the Zernike
polynomials pictorially, primary and secondary astigma-
tisms are plotted in Fig.4 (the correspondence to optical
aberrations can be found in Appendix A).

It is also convenient that explicit expressions of ra-
dial Zernike polynomials Rmn (r) in polar coordinates
can be calculated by the built-in Mathematica function
ZernikeR[n,m,r]. To build up the whole Zernike
polynomial Zmn (r), one just needs to multiply Rmn (r) by
cos(mθ) if m > 0, or by sin(mθ) if m < 0. To convert
to Cartesian coordinates, use the following Mathematica
command:

zernikeCartesian = Map[TrigExpand, zernikePolar]/.

⎧⎪⎪⎨⎪⎪⎩
ρ→

√
x2 + y2, Cos[θ]→ x√

x2 + y2
, Sin[θ]→ y√

x2 + y2

⎫⎪⎪⎬⎪⎪⎭
;

where “zernikeCartesian” and “zernikePolar” are the

user-specified Zernike polynomials in Cartesian and polar
coordinates, respectively.

Along an elliptical cylindrical mirror surface, slopes are
different at different points. During the in-process fabri-
cation of an elliptical mirror, tilt angles need to be taken
into account to make sure that the measurement is within
the interferometer’s capability. In order to create an el-
liptical profile, in the geometric model, we use small flat
surfaces tilted by different angles to approximate each
patch of the lateral side of the cylinder. Finally, we can
compare measurements at tilted angles with those at the
normal incidence angle to determine which types of aber-
rations have been introduced, since Zernike polynomials
directly relate to optical aberrations.

I have developed algorithms based on two different
mathematical principles to fit the discrete data (recorded
by 1024 × 1024 pixels) to Zernike polynomials to get the
coefficients, and then remove those components from the
original data. Because we only used a finite number of
polynomials, the remaining is not identically zero, but
instead with fluctuation which could be statistically de-
scribed and visualized.

III. AN ORDINARY LINEAR LEAST SQUARE
PROBLEM

Because the degrees of freedom of 1024 × 1024 data
arrays are much larger than those of the Zernike polyno-
mials to be fitted, we are dealing with an overdetermined
system, which means that there are more equations than
unknowns in this system of linear equations.

First of all, the optimal fitting algorithms should solve
ordinary least square problems (algebraic fitting) instead
of total least square problems (geometric fitting). The
former one means finding a surface that minimizes the
vertical displacement (along the z-axis) of a data point
from that surface. However, the latter one seeks to pro-
vide the best visual fit, which means minimizing the or-
thogonal distance to that surface. Although geometric
fitting provides a more aesthetic and geometrically ac-
curate result, it requires nonlinear and/or iterative cal-
culations, and complicates the problem by taking both
dependent and independent variables into account.

Because data obtained from the 4.88 mm × 4.88 mm
square aperture (corresponds 2.5× objective lens) come
from an arbitrary sampling set on the mirror surface,
statistically speaking, the field of view of this aperture
is approximately translational-invariant. Furthermore,
we are dealing with a single submap instead of several
submaps in microstitching process [5], there is no reason
to use weighted linear least square fitting as proposed by
Espinosa et al. [6]. Thus, all data points are given equal
weights in fitting.

For an ordinary linear least-square fitting, consider a
set of m data points y1, y2, ..., ym as a dependent variable,
consisting of experimentally measured values taken at m
values x1, x2, ..., xm of an independent variable, and an

5

estimator function y = f(x,β), where β = (β1, β2, ..., βm),
and then the objective is to find the parameters βj so that
the estimator function best fits the data. In linear least
squares, “linearity” refers that with respect to parame-
ters βj , i.e.

y = f(x,β) =
m

∑
j=1

βjφj(x). (7)

Although the function φj may be nonlinear with respect
to the variable x.

In practice, since the system under consideration is al-
most always an overdetermined system (as this project),
the estimator is not able to fit the data exactly. Then the
idea is to find the smallest possible summation of squares
of the residuals

ri(β) = yi − f(xi,β), i = 1,2, ...,m. (8)

so to minimize the objective function S(β) =
m

∑
j=1

r2i (β).

S is minimized when its gradient vector has zero norm.
The components of the gradient vector are the partial
derivatives of S with respect to the parameters βj :

∂S

∂βj
= 2

m

∑
j=1

rj
∂rj

∂βj
, j = 1,2, ...,m. (9)

Denote the function of x as φj(xi) =Xij , then the deriva-

tives are
∂ri
∂βj

= −Xij .

Substitution of the derivative and the expressions for
residuals ri into equations for the gradient vectors yields

∂S

∂βj
= 2

m

∑
j=1

(yi −
n

∑
k=1

Xikβk) , j = 1,2, ..., n. (10)

Thus if β̂ minimizes S, we have

m

∑
j=1

(yi −
n

∑
k=1

Xikβk) = 0, j = 1,2, ..., n. (11)

The so-called normal equations are obtained after re-
arrangement:

m

∑
j=1

n

∑
k=1

XijXikβ̂k =
m

∑
j=1

Xijyi, j = 1,2, ...n. (12)

These normal equations can be written in matrix forms
as

(XTX) β̂ =XTy, (13)

and theoretically, the solution of the normal equations

β̂ = (XTX)−1XTy yields the optimal parameter values.
After the introduction of this ordinary linear least

square problem, we could see that in order to get the
solution, there are three potential routes, as discussed in
the following.

A. Gram-Schmidt Orthogonalization

Since this method utilizes the orthogonality of Zernike
polynomials, it is indispensable to have a sampling region
whose shape is as close to a circle on the data array as
possible. One natural choice would be a circle with a
radius half of the side of the data array and centered at
the central point of the array. Incidentally, this choice
corresponds to the conventional choice of 30% aperture
overlapping during microstitching process [5] because 1−
1√
2
≈ 0.293.

In Section II on Zernike polynomials, one of their
important properties is the orthogonality over the unit
circle. However, this orthogonality (5) only holds for
continuous polynomial functions over a continuous cir-
cular domain, and cannot be applied to discrete data
sets recorded by the interferometer. Hence, if one wants
to base any algorithm on orthogonality, one has to use
Gram-Schmidt orthogonalization to create a new set of
orthogonal polynomials, which are orthogonal over a cer-
tain discrete data set.

Instead of using two indices m and n as first in-
troduced by Zernike, a single index r is used to label
Zernike polynomials as investigated by Malacara [7] as

j = n(n + 1)
2

+m + 1. The maximum value of j is the

total number of Zernike polynomials used in fitting and

is given by L = (K + 1)(K + 2)
2

, where K is the highest

degree of Zernike polynomials. Then an arbitrary wave-
front can be represented by

W (ρ,ϕ) =
L

∑
j=1

AjZj(ρ,ϕ). (14)

The next step is to find a new set of polynomials
Vj(ρ,ϕ) defined on a discrete data set within an approx-
imate circle. Assuming that the sampled wavefront may
be equally represented by both Zernike polynomials and
the newly generated orthogonal polynomials Vj with the
same degrees of freedom, we have:

W (ρ,ϕ) =
L

∑
j=1

BjVj(ρ,ϕ). (15)

Where the new polynomials Vj(ρ,ϕ) satisfy the discrete
orthogonal condition on the set of N data points (en-
closed by the circular mask) with coordinates (ρi, ϕi):

N

∑
i=1

Vj(ρi, ϕi)Vp(ρi, θi) = Fδjp, (16)

where F is a normalization factor, and δjp is Kronecker
delta.

6

To find Vj , Gram-Schmidt process is carried out as:

V1 = Z1,
V2 = Z2 +D21V1,
V3 = Z3 +D31V1 +D32V2,
⋮

Vj = Zj +Dj1V1 +Dj2V2 + ... +Dj,j−1Vj−1,

(17)

expressed in a compact notation, we have

Vj = Zj +
j−1

∑
s=1

DjsVs, j = 1,2,3, ..., L. (18)

Because we require that Vj(ρ,ϕ) to be orthogonal to
Vp(ρ,ϕ), we take the product of Vj(ρ,ϕ) and Vp(ρ,ϕ)
and then sum it for all data points within the circular
mask, from i = 1 to N . Invoking the discrete orthogonal-
ity condition gives the expression ∀j ≠ p:

N

∑
i=1

VjVp =
N

∑
i=1

ZjVp +Djp

N

∑
i=1

V 2
p = 0 (19)

Then we have

Djp =

N

∑
i=1

ZjVp

N

∑
i=1

V 2
p

, (20)

with j = 2,3,4, ..., L and p = 1,2,3, ..., j − 1.
Now similar to the least square fitting in the previ-

ous section, we define a quantity S as root-mean-square
value:

S =
N

∑
i=1

[W ′

i −W (ρi, ϕi)]2, (21)

whereW ′

i is the measured surface height data at sampling
points i, while W (ρi, ϕi) is the height profile with ana-
lytical forms after fitting. On the other hand, since the
analytical height profile could be represented as a linear
combination of the new orthogonal polynomials V (ρ,ϕ),
we have:

W (ρi, ϕi) =
L

∑
j=1

BiVj(ρi, ϕi). (22)

Same as before, to minimize S, we impose the condition:

∂S

∂Bp
= 0, p = 1,2,3, ..., L (23)

Thus we acquire this linear system of L equations with
L unknown variables:

L

∑
j=1

Bj
N

∑
i=1

VjVp −
N

∑
i=1

W ′

iVp = 0, p = 1,2,3, ..., L. (24)

Then by orthogonality, we find

Bp =

N

∑
i=1

W ′

iVp

N

∑
i=1

V 2
p

, (25)

the coefficients which determine the linear combination
of the polynomials Vj(ρ,ϕ).

Finally, we need to determine the expression of the
new polynomials Vj as a linear combination of Zernike
polynomials and find those coefficients Cjs. We begin by

V1 = Z1,
V2 = Z2 +C21Z1,
V3 = Z3 +C31Z1 +C32Z2,
⋮

Vj = Zj +Cj1Z1 +Cj2Z2 + ... +Cj,j−1Zj−1.

(26)

or more compactly Vj = Zj +
j−1

∑
i=1

CjiZi, where j =

2,3,4, ..., L, Cjj = 1, and V1 = Z1.
We can solve equations (17) and (26) together and have

[7]:

C21 =D21,
C31 =D32C21 +D31,
C32 =D32,
C41 =D43C31 +D42C21 +D41,
C42 =D43C32 +D42,
C43 =D43,

⋮

(27)

Equations above could be summarized by

Cji =
j−1

∑
i=1

Dj,j−sCj−s,i, (28)

where i = 1,2,3, ..., j − 1 and Cjj = 1.
Since coefficients Bj and Cj are known, the expansion

coefficients Aj of Zernike polynomials could be found by
substituting (28) into (22), getting

W (ρ,ϕ) = B1Z1 +
L

∑
j=2

Bj (Zj +
j−1

∑
i=1

CjiUi)

=
L−1

∑
j=1

⎛
⎝
Bj +

L

∑
i=j+1

BiCij
⎞
⎠
Zj +BLZL.

(29)

Comparing (29) with (14) yields

Aj = Bj +
L

∑
i=j+1

BiCij , (30)

where j = 1,2,3, ..., L − 1, and AL = BL.
In order to observe the connection between Gram-

Schmidt orthogonalization and the linear least square

7

problem, from Eq.(14), (15), and (29), we have the fol-
lowing matrix equation after setting the coefficient of
each orthogonal polynomial Vj to zero:

⎛
⎜⎜⎜⎜⎜
⎝

C11 C12 C12 . . . C1L

0 C22 C12 . . . C2L

0 0 C32 . . . C3L

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . CL,L

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

A1

A2

A3

⋮
AL

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

B1

B2

B3

⋮
BL

⎞
⎟⎟⎟⎟⎟
⎠

. (31)

or compactly

Ca = b, (32)

where C is the square matrix of coefficients appeared in
Eq.(29). Notice that matrix C is upper triangular, so we
can solve Aj by direct back-substitution, which is simi-
lar to the iterative equations in Eq.(26) or Eq.(27). So
Eq.(32) is equivalent to the orthogonalization process.
Also because C is square, matrix Eq.(32) is, a least the-
oretically, equivalent to

CTCa =CTb, (33)

which is exactly the normal equations in Eq.(13).
It is known that the abovementioned classical Gram-

Schmidt process is numerically unstable due to round-
ing error [8], and one shall see that after the imple-
mentation of this orthogonalization algorithm in Section
V, the results are indeed inaccurate compared to those
from the algorithm based on Moore-Penrose pseudoin-
verse (which is closely related to, but is even more sta-
ble than Eq.(33)), which will be discussed below. The
comparison between results from orthogonalization and
pseudoinverse algorithms can be found in Table I. Hence,
although Eq.(32) and Eq.(33) maybe theoretically iden-
tical, they exhibit different numerical behaviors in the
context of this article.

B. Moore-Penrose Pseudoinverse Method

Different from the previous approach, the methods in
the current and the next subsections directly solve the
least square problem without invoking orthogonality, so
the circular mask region on data array is not required.

Moore-Penrose pseudoinverse (represented by “pseu-
doinvers” thereafter) is one of the most commonly used
generalized matrix inverse, since it provides a least square
solution to a system of linear equations [9].

Let K be the underlying fields of real numbers R or
complex numbers C, then the vector space of m × n
matrices (not necessarily square) over K is denoted by
M(m,n;K). For A ∈ M(m,n;K), the unique pseudoin-
verse of A is defined as a matrix A+ ∈M(m,n;K) satis-
fying all the following conditions:

1.AA+A = A;
2.A+AA+ = A+;
3.(AA+)∗ = AA+ (AA+ is Hermitian);

4.(A+A)∗ = A+A (A+A is also Hermitian),

where A∗ denotes the Hermitian transpose (also called
conjugate transpose) of matrix A.

Generally, there is no explicit expression for A+, except
for matrices with linearly independent columns or rows.
A computationally simple and accurate way to compute
the pseudoinverse is by using the singular value decom-
position (SVD), which is a numerically stable method. If
A = UΣV ∗, where U is a m × n real or complex unitary
matrix, Σ is an m × n rectangular diagonal matrix with
nonnegative real numbers on the diagonal, and V ∗ is an
n×n real or complex unitary matrix, then the pseudoin-
verse is A+ = V Σ+U∗, and MATLAB utilizes this princi-
ple to calculate pseudoinverse of A by pinv() function.
Notice that SVD is also used to determined the condi-
tion number of a matrix, which will be illustrated in the
beginning of Section V.

For some readers, it is tempting to directly invert the
matrix (XTX) in normal equation (13) to the right-

hand-side to get a final matrix (XTX)−1XT. Theo-
retically speaking, this is a feasible approach, because
the m×n matrix X describes an overdetermined system,
which implies thatm ≥ n by definition. Then the columns
of X are linearly independent, so X∗X is invertible, and
we have X+ = (X∗X)−1X∗ = (XTX)−1XT since X is a
real matrix (so that X∗ = XT) [10]. However, at first,
it is not computationally efficient to invert the matrix in
normal equations, although an exception occurs in nu-
merical smoothing where an analytical expression is re-
quired, such as the 1/2D Savitzky-Golay in Section IV.B.
Secondly, this inverting process is less numerically stable
than SVD algorithm, because the matrices appeared dur-
ing inverting process could be highly singular. Hence, in
the future all codes use pinv() function instead of di-
rectly inverting the normal equation.

In particular, for our current problem, the matrix A
from which we want to compute its pseudoinverse is not
obvious, but is obtained via a matrix manipulation called
vectorization, which is compatible with both Hadamard
product and inner product [11]. Its detailed implemen-
tation is explained in the beginning of Section V.B. Vec-
torization will also be used later in the construction of
a digital filter in Section IV, as shown from Eq.(47) to
Eq.(51).

C. Numerical Double Integral in Cylinder
Coordinates

Differing from discrete summation, integration implies
computation over approximately continuous domains in
R2. Due to the mandatory requirement that the orthog-
onality only holds over the unit circle, there is a huge
inaccuracy due to the circular edge (stair-like) of domain
to be integrated over. Hence, neither Simpson’s double
integral nor Gaussian quadrature for double integral are
hard to implement.

8

However, it is possible that an accurate implementa-
tion could be achieved in the future.

IV. FILTERING PRIOR TO DATA FITTING

A. Six Standard Deviation Threshold

After the data are processes by the implemented pseu-
doinverse and orthogonalization algorithms (see Section
V), the results are displayed in Table I. It is clear that the
RMS and PV given by both algorithms are very different
from those offered by MicroXAM. Although the orthogo-
nalization algorithm is less stable (its RMS becomes less
and less accurate at larger angles), its results are basi-
cally compatible with those output by the pseudoinvese
algorithm, so it is not likely that the previous numeri-
cal approaches are imprecise. The only option to solve
this inconsistency is to pretreat the collected data, i.e. to
apply signal processing before the bona fide fitting.

The most rudimentary “filter” is an abrupt threshold
built up for outliers. After trial-and-error with all mea-
sured data, 6 standard deviations (SD) is chosen to be
the threshold to filter out outliers. The root cause of
those outliers could be the bubbles during deposition,
scratches, or dusts. For each tilt angle, the numbers of
outliers are counted by a code slightly modified from the
code in Section V.B, and are listed in Table II.

This approach is appropriate because it performs as
a filter. In MATLAB, the robust versions of LOESS
and LOWESS (locally weighted scatterplot smooth-
ing), ‘rlowess’ and ‘rloess’, respectively, assign zero
weight to data outside six mean absolute deviations
(MAD), which is defined as the average distance of the
data set from its mean. With Jensen’s inequality, one
could prove that MAD is always less then or equal to
SD, and for the normal distribution, the ratio of MAD

to SD is

√
2

π
= 0.79788456.... Hence, 6-SD is a reason-

able threshold.

B. Two Dimensional Savitzky-Golay Filter for
Data Smoothing

The disadvantage of the artificially imposed 6-SD
threshold is the significant reduction of peak-to-valley
values due to the new maximal possible height difference
of 12 SD, as shown in Table V. This result is due to the
abrupt cutoff of the 6-SD threshold, hence a milder data
smoother is required. The desired filter is supposed to
“pull” outliers back with less extent.

By reasons we will discuss about later, the final choice
is two-dimensional Savitzky-Golay (SG) Filter. It is first
popularized by Abraham Savitzky and Marcel J. E. Go-
lay who published tables of convolution coefficients for
various polynomials in one highly cited paper [12]. It is a

generalized moving average with filter coefficients deter-
mined by an unweighted linear least-square local regres-
sion and a polynomial model of specific degrees. Math-
ematically speaking, it is also a finite impulse response
filter and a convolution filter as well.

When data points are equally spaced, an analytical
solution to the least-square problem can be found, so that
a single set of convolution coefficients can be applied to
all subsets of the data set to give the smoothed signal.
We will discuss about the mathematical construction of
the 1D SG filter in the following.

Suppose that the data consists of a set of n{xj , yj}
points (i = 1,2, ..., n), where x is an independent variable
and yi is a datum value. A polynomial will be locally
least-square fitted to a set of m (an odd number) adjacent
data points, each separated by an interval h. First, apply
change of variable

zi =
xi − x
h

, (34)

where x is the median of the support, z takes the values
1 −m

2
, ...,0, ...,

m − 1

2
. Define a polynomial of degree k as

Y = a0 + a1z + a2z2 + ... + akzk. (35)

The coefficients a0, a1... are obtained by solving the nor-
mal equations which is similar to Eq.(13):

a = (JTJ)−1JTy (36)

where the ith row of the Jacobian matrix J = ∂Y

∂a
has

values 1, zi, z
2
i ,

Notice that there are some similarities and differences
between data fitting and smoothing. In data smoothing,
the method is often associated with tuning parameters
which are used to control the extent of smoothing. For
example, in SG filter, we have two tuning parameter:
the degree of local fitting polynomials and the width of
fitting frame. These tuning parameters are taken into
account during the algorithm implementation, and will
be discussed in Section V.D.

There are several reasons to choose SG filter. First,
it utilizes the least-square polynomials fitting, which fits
well in our context. Second, it is a low-pass filter. If we
consider the time sequence and spatial dimensions along
the mirror surface on the same footing, those outliers
beyond 6 SD shown in Table II can be reasonably con-
sidered as undesired high-frequency components because
they could be approximated by Dirac delta functions. In
order to lessen those high-frequency components, we need
a low-pass filter. Finally, compared to other standard av-
eraging finite-impulse-response filter, which reject noise
significantly, SG filter achieves better signal preservation,
and since we want PV values to be as close to the genuine
value as possible, SG filter is also desirable with respect
to this consideration.

However, there is a caveat to view spatial dimensions
as a time sequence. If the domain a filter operates on is

9

Computational and Measurement Results from the Zerodur Reference Mirror
Angles Fringe Terms From MicroXAM From the Pseudoinverse Algorithm From the Orthogonalization Algorithm
(µrad) Numbers Removed RMS (Å) PV(Å) RMS(Å) PV(Å) RMS (Å) PV(Å)

17.18 0
Order 1 0.651 80.5 1.097 278.16 1.178 278.16
Order 2 0.516 79.9 1.022 278.15 1.122 278.14
Order 3 0.506 79.9 1.016 278.15 1.121 278.17

45.54 1
Order 1 0.602 103 1.086 278.08 1.173 278.09
Order 2 0.546 102 1.051 278.08 1.158 278.07
Order 3 0.521 103 1.043 278.09 1.174 278.09

99.75 2
Order 1 0.728 57.7 1.246 279.77 1.344 279.78
Order 2 0.639 57.7 1.195 279.76 1.333 279.74
Order 3 0.582 57.7 1.168 279.77 1.407 279.75

193.1 3
Order 1 1.03 98.9 1.669 321.61 1.668 321.85
Order 2 0.667 98.9 1.469 320.96 1.714 319.71
Order 3 0.634 98.9 1.460 321.09 1.957 320.16

265.4 4
Order 1 1.35 63.2 2.100 359.33 2.018 359.69
Order 2 0.772 59.6 1.777 358.41 2.111 356.82
Order 3 0.752 59.6 1.769 358.51 2.479 357.31

327.8 5
Order 1 1.64 68.7 2.489 391.58 2.338 392.03
Order 2 0.873 64 2.060 390.44 2.470 388.53
Order 3 0.848 64.1 2.050 390.55 2.947 389.08

TABLE I. Here shows the comparison of outputs by MicroXAM, the algorithm using pseudoinverse, and the algorithm using
Gram-Schmidt orthogonalization. Notice that RMS from the two algorithms are close to each other at small tilt angles.

Angles (µrad) Terms Removed Number of Outliers

17.18
Order 1 493
Order 2 537
Order 3 535

45.54
Order 1 737
Order 2 752
Order 3 760

99.75
Order 1 888
Order 2 891
Order 3 903

193.1
Order 1 1026
Order 2 1106
Order 3 1064

265.4
Order 1 1187
Order 2 1316
Order 3 1368

327.8
Order 1 1268
Order 2 1769
Order 3 1869

TABLE II. The number of outliers (deviate more than 6 stan-
dard deviations) increases with tilt angles.

time sequence, causality should be considered, but it is
a different case for spatial dimensions. Hence, the lower
and upper limits of the discrete summations in the fol-
lowing Eq.(40), (41), (44) are all symmetric.

It is known that any filter which has a convolution ker-
nel with all positive (or all negative) weights does these
three equivalent effects: weighted averaging, spatial blur-
ring and low-pass filtering [13].

To illustrate the statement above, first we consider a
convolution of a continuous function f(x) with another
fixed continuous function g(x). The convolution is given

by

(f ∗ g)(x) = ∫
∞

−∞

f(x − y)g(y)dy. (37)

After Fourier transform Eq.(37) becomes

F{f ∗ g}(k) = n ⋅F{f}(k) ⋅F{g}(k) (38)

by convolution theorem, where F{f} denotes the Fourier
transform of f , k is the variable in Fourier space, and n is
a constant which depends on the specific normalization
convention of Fourier transform [14]. Hence, for a desired
low-pass filter, F{g}(k) is supposed to be very small for
large k so it can suppress high-frequency components in
(f ∗ g)(x).

Similar to Eq.(37), the discrete convolution is defined
as

(f ∗ g)[n] =
∞

∑
m=−∞

f[n −m]g[m], (39)

where [⋅] indicates the discrete nature. For a non-causal
finite impulse response, when g has a finite and symmet-
ric support {−M,−M + 1, ...,M − 1,M}, a finite summa-
tion is used

(f ∗ g)[n] =
M

∑
m=−M

f[n −m]g[m] (40)

Specifically, for 1D Savitzky-Golay filter, the discrete
Fourier transform (DFT) of Eq.(40) yields

F(θ) =
(m−1)/2

∑
j=(1−m)/2

Cj cos(jθ) (41)

10

FIG. 5. The top one shows the impulse response function of
the 1D SG filter with cubic polynomials on 5 data points; the
bottom one shows the impulse response function of the 1D SG
filter with cubic polynomials on 9 data points. Both show the
characteristics of a low-pass filter. Notice that the response
intensity at zero frequency is unit for both cases.

where 0 ≤ θ ≤ π is the variable in the frequency do-
main. Notice that now cos(jθ) in Eq.(41) corresponds
to F{g}(k) in Eq.(35) despite its discreteness. Qualita-
tively, cosine function monotonically decreases with the
increase of its argument. Hence, this convolution filter is
a low-pass filter. Quantitatively, for a 1D SG filter which
uses cubic polynomials (with (1 −m)/2 ≤ i ≤ (m − 1)/2),
the smoothing coefficients have closed forms:

C0i =
(3m2 − 7 − 20i2)/4
m(m2 − 4)/3

(42)

Then with C0i and Eq.(41), 1D DFT yields the impulse
response functions (point spread function in the optical
sense) in frequency domain. Fig.5 shows the plots for 5
points and 9 points, respectively.

Since for a multidimensional array xn1,n2,...,nd
that is

a function of d discrete variables nl = 0,1, ...,Nl − 1 for l
in 1,2, ..., d, its multidimensional DFT is defined by

Xk1,k2,...,kd =

N1−1

∑
n1=0

⎛
⎝
ωk1n1

N1

N2−1

∑
n2=0

⎛
⎝
ωk2n2

N2
...
Nd−1

∑
nd=0

ωkdnd

Nd
⋅ xn1,n2,...,nd

⎞
⎠
⎞
⎠
,

(43)

FIG. 6. The top one shows the impulse response function of
the 2D SG filter with cubic polynomials on 5 × 5 data array;
the bottom one shows the impulse response function of the 2D
SG filter with cubic polynomials on 9 × 9 data array. Notice
the similarity with the impulse response functions of 1D filter.

where ωNl
= exp(−2πi/Nl), and the output indices d run

from kl = 0,1, ...,Nl −1. Then the DFT of the the 2D SG
filter has the following expression:

F(θ,ϕ) =
(m−1)/2

∑
j=(1−m)/2

cos(jθ)
⎛
⎝

(m−1)/2

∑
1=(1−m)/2

Cij cos(iθ)
⎞
⎠

(44)

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ π are variables in the 2D fre-
quency domain. The results from the application of DFT
on the 2D SG filter with cubic polynomials on 5 and 9
points are shown in Fig.6.

With regards to the implementation of SG filter,
MATLAB only provides 1D SG filter by function
“sgolayfilt(,,)”, based on the illustration from
Eq.(34) to Eq.(36) for 1D case. If the input data is a
matrix, “sgolayfilt” operates on each column in 1D
manner [15], which is not desired since each data points
are correlated with its adjacent points in both dimen-
sions. Hence, I have to build my own script about 2D
filter in my codes.

For illustration, I take the filter with 5×5 fitting frame
(same as the 1D case, the width has to be an odd number)
and fitting polynomials of degree 3 for example, so the
patch to be smoothed looks like (di are data points):

First we apply the change of variables:

v = xi − x
h(x)

, w = yi − y
h(y)

, (45)

where i=1,2,...,n, h(x) and h(y) are intervals in x− and
y−directions, respectively.

11

xi
-2 -1 0 1 2

yi

-2 d1 d2 d3 d4 d5
-1 d6 d7 d8 d9 d10
0 d11 d12 d13 d14 d15
1 d16 d17 d18 d19 d20
2 d21 d22 d23 d24 d25

Then construct the following polynomial from homo-
geneous bivariate polynomials for each degree:

Y = a00 + a10v + a01w + a20v2 + a11vw + a02w2 + a30v3

+a21v2w + a12vw2 + a03w3.

(46)

We perform a linear transformation called vectoriza-
tion, as introduced near the end of Section III.B [11], to
turn the data matrix

D =

⎛
⎜⎜⎜⎜⎜
⎝

d1 d2 d3 d4 d5
d6 d7 d8 d9 d10
d11 d12 d13 d14 d15
d16 d17 d18 d19 d20
d21 d22 d23 d24 d25

⎞
⎟⎟⎟⎟⎟
⎠

(47)

into a single column vector

d = (d1, d2, ..., d25)T (48)

We can obtain the coefficients aij from this matrix equa-
tion:

Xa = d, (49)

where

X =

⎛
⎜⎜⎜
⎝

1 x0 y0 x20 x0y0 y20 x30 x20y0 x0y
2
0 y30

1 x1 y1 x21 x1y1 y21 x31 x21y1 x1y
2
1 y31

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 x24 y24 x224 x24y24 y224 x324 x224y24 x24y

2
24 y324

⎞
⎟⎟⎟
⎠

(50)
and

a = (a00, a10, a01, a20, a11, a02, a30, a21, a12, a03)T (51)

We solve Eq.(48) using linear least square fitting via
pinv() function, so that

a = (XTX)−1XTd =X+d (52)

since X is a 25 × 10 matrix [10]. Hence, each polynomial
coefficient aij is computed as the inner product of one
row of X and the column vector d. In order to get square
digital filters, we horizontally assemble each row of X into
a 5×5 square matrix [16]. Since there are 10 rows in X+,
we get 10 digital filters X+

00,X
+

10,X
+

01, ...,X
+

03, which
are all 5 × 5 square matrices.

For the local data fitting on this 5 × 5 patch, the local
coordinate system has the origin (v, x) = (0,0) at the cen-
ter of the fitting frame. Notice that the data smoothing

is performed frame by frame, and each frame is entirely
used to only smooth the central point. Thus to compute
the smoothed value of that point, we just need to evalu-
ate the polynomial in Eq.(46) at (v, x) = (0,0), and this
turns out to be just a00, which can be calculated by ap-
plying filter C00 to the fitting frame and then summing
up all elements in the Hadamard product of D in Eq.(47)
and C00.

For demonstration, convolution coefficient matrices
C00’s for widths 5 and 9 are displayed in Table III and
IV. They are computed by a MATLAB code, which is
incorporated as a subfunction “savg(g,h)” within the
pseudoinverse algorithm (Section V.C) from line 64 to
line 88, and in the guided algorithm (Section V.D) from
line 169 to line 193.

Because of the width m of the fitting frame, the
m − 1

2
points along each edge of the square frame cannot be
smoothed by the abovementioned scheme. Although this
difficulty could be overcome by extending the convolution
approach [17], for our purpose, there is no need of doing
so because of the almost translational invariance of field
of view, Hence, we just exclude those points in statistics
in all codes.

The distortion of the signal in the convolution pro-
cess is inevitable (refer to Fig.11 and Fig.12). It is
known that smoothing of a function leaves the area un-
der the function unchanged [12], after the peak of data is
smoothed, the peak height is reduced and the half-width
is increased. Hence, qualitatively, the signal-to-noise ra-
tio decreases as the degrees of the polynomials increase,
and increases as the square size, m, of the convolution
function increases [18]. Hence, in order to fit the results
of our algorithm to those from the interferometer, the
polynomials with lowest possible powers are used (later
it turns out to be 2), and the output of the algorithm
equipped with a 6-SD threshold (see Section V.C) will
dictate the square size (see Section V.D) .

As an promising alternative, one can also consider
the implementation of Gaussian filter (also called Gaus-

sian blur in image processing softwares, such as Adobe®

Photoshop®), since it also convolves the image with a
fixed Gaussian function, in a process known as 2D Weier-
strass transform, hence it is also a low-pass filter as de-
sired. It is non-causal which means the filtering frame
is symmetric about the origin in the time-domain. Its
feasibility will be discussed in Section VI.

V. IMPLEMENTATION OF ALGORITHMS

For all algorithms, we need to consider the condition
number of matrix, since we do not want any matrix dur-
ing the computation to be near singular. The condition
number of a nonsingular, square matrix A relative to its
operator norm [19] ∣∣ ⋅ ∣∣ is defined as [20]:

K(A) = ∣∣A∣∣ ⋅ ∣∣A−1∣∣, (53)

12

-0.0743 0.0114 0.04 0.0114 -0.0743
0.0114 0.0971 0.1257 0.0971 0.0114
0.04 0.1257 0.1543 0.1257 0.04

0.0114 0.0971 0.1257 0.0971 0.0114
-0.0743 0.0114 0.04 0.0114 -0.0743

TABLE III. Convolution coefficients for 2D SG filter on 5 points

-0.0325 -0.0157 -0.0037 0.0035 0.0059 0.0035 -0.0037 -0.0157 -0.0325
-0.0157 0.0011 0.0131 0.0203 0.0228 0.0203 0.0131 0.0011 -0.0157
-0.0037 0.0131 0.0252 0.0324 0.0348 0.0324 0.0252 0.0131 -0.0037
0.0035 0.0204 0.0324 0.0396 0.0420 0.0396 0.0324 0.0204 0.0035
0.0059 0.0228 0.0348 0.0420 0.0444 0.0420 0.0348 0.0228 0.0059
0.0035 0.0204 0.0324 0.0396 0.0420 0.0396 0.0324 0.0204 0.0035
-0.0037 0.0131 0.0252 0.0324 0.0348 0.0324 0.0252 0.0131 -0.0037
-0.0157 0.0011 0.0131 0.0203 0.0228 0.0203 0.0131 0.0011 -0.0157
-0.0325 -0.0157 -0.0037 0.0035 0.0059 0.0035 -0.0037 -0.0157 -0.0325

TABLE IV. Convolution coefficients for 2D SG filter on 9 points

and a matrix A is well-conditioned if K(A) is small and
close to 1.

However, in our codes, matrices in some interme-
diate manipulations are rectangular. More gener-
ally, a condition number is defined as the ratio of
the largest to smallest singular value in the singu-
lar value decomposition of a matrix [21], and MAT-
LAB uses SVD algorithm to compute this ratio with
respect to 2-norm. For numerical computation, well-
conditioned matrices in all intermediate steps are highly
desired. As one of the consequences, the initial di-
vision of the meshgrids in all codes in this section
are achieved by linspace(-1,1,1024), instead of
linspace(-2444000,2444000,1024). This scaling
change will be accounted for in the discussion in Section
VI.

Our goal is to simulate the process performed by Mi-
croXAM’s built-in software called Mapvue, whose inter-
faces are shown in Fig.7. The criteria for a satisfying al-
gorithm is that its output results are as close to Mapvue’s
as possible. Mapvue can only remove Zernike polynomi-
als in 3 orders explicitly (16 terms in total) as specified
by Fig.8, so in all codes we calculated 16 Zernike polyno-
mials with the ordering same as those in Mapvue, but dif-
ferent from the conventions in standard literatures. For
orders higher than 3, Mapvue is still able to remove them,
but we know nothing about their explicit expressions.

In all of algorithms in this section, similar to Wang
& Silva [22] and Mahajan [23], I use the ANSI Z80.28-
2009 standard definition of Zernike polynomials with ad-
ditional constants, k, which, for nonrotationally symmet-
ric terms (with trigonometric component), is

k =
√

2(n + 1), (54)

and, for rotationally symmetric terms (without trigono-
metric prefactors), is

k =
√
n + 1. (55)

Finally, in the evaluation of Zernike polynomials at
1024×1024 data points, we use Cartesian coordinates in-
stead of polar coordinates, although their representations
are more concise in polar coordinates. The reason is that
the meshgrid is created in a rectangular way in the be-
ginning of every code. If we were to convert Cartesian
coordinates into polar coordinates, we would get round-
ing errors from the MATLAB function atan, and also
have to assign the angle value on data points in each
quadrant because for each real number x, the range of

atan(x) is [−π
2
,
π

2
].

All algorithms are implemented by procedural pro-
gramming, instead of object-oriented programming.

A. Orthogonalization Algorithms (without Filter)

In the following code, the maximum circular mask re-
gion is created from line 9 to line 18; function values
of the first 16 Zernike polynomials at each grid points
are specified from line 20 to line 36; the Gram-Schmidt
orthogonalization described from Eq.(14) to Eq.(30) is
implemented from line 38 to line 101; line 103 and line
104 outputs RMS and PV values, respectively. All codes
appeared later will have the similar organization.

1 function rms = orthogona l (data , f , k)
2 M = data ;
3 X = linspace (−1024/k ,1024/ k ,1024) ;
4 [p , q] = meshgrid (X,−X) ;
5 x = p ;
6 y = q ;
7 Z = ones (1024) ;
8

9 for i = 1:1024
10 for j = 1:1024
11 i f (((i −512 .5) ˆ2+(j −512 .5) ˆ2) ⤦

Ç >((k−1) /2) ˆ2)==1

13

(a) Mapvue® Software Interface

(b) Data Process Interface concerning Zernike Polynomials

FIG. 7. MicroXAM RTS’ Built-in Software Interfaces.

12 x (i , j) = 0 ;
13 y (i , j) = 0 ;
14 M(i , j) = 0 ;
15 Z(i , j) = 0 ;
16 end
17 end
18 end
19

20 U = c e l l (f , 1) ;
21 U{1} = Z ;
22 U{2} = 2∗x ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
23 U{3} = 2∗y ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
24 U{4} = (3ˆ(1/2)) ∗(−Z+2∗(x.ˆ2+y . ˆ 2)) ;
25 U{5} = (6ˆ(1/2)) ∗(x .ˆ2−y . ˆ 2) ;
26 U{6} = 2∗ (6ˆ(1/2)) .∗ x .∗ y ;
27 U{7} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗x+3∗x . ∗ (x.ˆ2+y . ˆ 2)) ;
28 U{8} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗y+3∗y . ∗ (x.ˆ2+y . ˆ 2)) ;
29 U{9} = (5ˆ(1/2)) ∗(Z−6∗(x.ˆ2+y . ˆ 2) ⤦

Ç +6∗(x.ˆ2+y . ˆ 2) . ˆ 2) ;
30 U{10} = (8ˆ(1/2)) ∗(x .ˆ3−3∗x . ∗ (y . ˆ 2)) ;
31 U{11} = (8ˆ(1/2)) ∗ (3∗ (x . ˆ 2) .∗ y−y . ˆ 3) ;
32 U{12} = (10ˆ(1/2)) ∗(−3∗x.ˆ2+3∗y .ˆ2 ⤦

Ç +4∗x .ˆ4−4∗y . ˆ 4) ;
33 U{13} = (10ˆ(1/2)) ∗(−6∗x .∗ y ⤦

Ç +8∗x .∗ y . ∗ (x.ˆ2+y . ˆ 2)) ;
34 U{14} = (12ˆ(1/2)) ∗(3∗x ⤦

Ç −12∗x . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗x . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

35 U{15} = (12ˆ(1/2)) ∗(3∗y ⤦
Ç −12∗y . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗y . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

36 U{16} = (7ˆ(1/2)) ∗(−Z+12∗(x.ˆ2+y . ˆ 2) ⤦
Ç −30∗(x.ˆ2+y . ˆ 2) . ˆ2 ⤦
Ç +20∗(x.ˆ2+y . ˆ 2) . ˆ 3) ;

37

38 D = c e l l (f) ;
39 D{1 ,1} = 0 ;
40 V = c e l l (3 , 1) ;
41 for i = 2 : f
42 V{ i } = zeros (1024) ;
43 end
44 V{1} = u{1} ;
45

46 for m = 2 : f
47 w = zeros (1024) ;
48 for n = 1 :m−1
49 D{m, n} = ⤦

Ç sum(sum((u{m}) . ∗ (V{n})))
50 /(sum(sum((V{n}) . ˆ 2))) ;
51 W = w+(D{m, n}) ∗V{n } ;
52 w = W;
53 end
54 V{m} = u{m}+w;
55 end
56

57 C = zeros (f) ;
58 for j = 2 : f
59 for i = 1 : f
60 i f (i==j)==1
61 C(j , i) = 1 ;
62 end
63 i f (j<i)==1
64 C(j , i) = 0 ;
65 end
66 end
67 end
68

69 for j = 2 : f
70 for i = 1 : j −1
71 q = 0 ;
72 for s = 1 : j − i
73 Q = (D{ j , j −s }) ∗C(j −s , i)+q ;
74 q = Q;
75 end

14

FIG. 8. The first 3 orders used by the data analysis software of MicroXAM RTS, which can only remove in 3 discrete steps.

76 C(j , i) = q ;
77 end
78 end
79

80 B = zeros (1 , f) ;
81 for m = 1 : f
82 B(m) = sum(sum(M. ∗ (V{m})))
83 /(sum(sum((V{m}) . ˆ 2))) ;
84 end
85

86 A = zeros (1 , f) ;
87 for j = 1 : f −1
88 p = 0 ;
89 for i = (j +1) : f
90 P = (B(i)) ∗(C(i , j))+p ;
91 p = P;
92 end
93 A(j) = B(j)+p ;
94 end
95 A(f) = B(f) ;
96

97 n = zeros (1024) ;
98 for j = 1 : f
99 N = (A(j)) ∗(u{ j })+n ;

100 n = N;
101 end
102

103 L = nonzeros (M−N) ;
104 rms = ((std2 (L)) ˆ2− ⤦

Ç (mean2(L)) ˆ2) ˆ(1/2) ;
105 end

As discussed in the ends of Section III.A above and
Section V.B below, this orthogonalization algorithm will
not be utilized in the finalized code due to its relatively
coarse results.

B. Pseudoinverse Algorithms (with the Threshold
of Six Standard Deviation)

In order to avoid redundancy, in this subsection, I
directly present the pseudoinverse algorithm with 6-SD
threshold. To dismount this 6-SD threshold, just delete
the codes from line 44 to line 69.

1 function aa = thre sho ld (data ,XAM, f) ⤦
Ç %f i s the order the user ⤦
Ç s p e c i f i e d , XAM i s the processed ⤦
Ç data wi th order 2 Zernike ⤦
Ç removed by MicroXAM

2 M = data ;

3 X = linspace (−1 ,1 ,1024) ;
4 [x , y] = meshgrid (X,−X) ;
5 Z = ones (1024) ;
6

7 U = c e l l (f , 1) ;
8 U{1} = Z ;
9 U{2} = 2∗x ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
10 U{3} = 2∗y ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
11 U{4} = (3ˆ(1/2)) ∗(−Z+2∗(x.ˆ2+y . ˆ 2)) ;
12 U{5} = (6ˆ(1/2)) ∗(x .ˆ2−y . ˆ 2) ;
13 U{6} = 2∗ (6ˆ(1/2)) .∗ x .∗ y ;
14 U{7} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗x+3∗x . ∗ (x.ˆ2+y . ˆ 2)) ;
15 U{8} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗y+3∗y . ∗ (x.ˆ2+y . ˆ 2)) ;
16 U{9} = (5ˆ(1/2)) ∗(Z−6∗(x.ˆ2+y . ˆ 2) ⤦

Ç +6∗(x.ˆ2+y . ˆ 2) . ˆ 2) ;
17 U{10} = (8ˆ(1/2)) ∗(x .ˆ3−3∗x . ∗ (y . ˆ 2)) ;
18 U{11} = (8ˆ(1/2)) ∗ (3∗ (x . ˆ 2) .∗ y−y . ˆ 3) ;
19 U{12} = (10ˆ(1/2)) ∗(−3∗x.ˆ2+3∗y .ˆ2 ⤦

Ç +4∗x .ˆ4−4∗y . ˆ 4) ;
20 U{13} = (10ˆ(1/2)) ∗(−6∗x .∗ y ⤦

Ç +8∗x .∗ y . ∗ (x.ˆ2+y . ˆ 2)) ;
21 U{14} = (12ˆ(1/2)) ∗(3∗x ⤦

Ç −12∗x . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗x . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

22 U{15} = (12ˆ(1/2)) ∗(3∗y ⤦
Ç −12∗y . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗y . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

23 U{16} = (7ˆ(1/2)) ∗(−Z+12∗(x.ˆ2+y . ˆ 2) ⤦
Ç −30∗(x.ˆ2+y . ˆ 2) . ˆ2 ⤦
Ç +20∗(x.ˆ2+y . ˆ 2) . ˆ 3) ;

24

25 u = c e l l (1 , f) ;
26 for i = 1 : f
27 u{ i } = reshape (U{ i } , 1024ˆ2 ,1) ;
28 end
29

30 NN = M;
31

32 M = reshape (M,1024ˆ2 ,1) ;
33 Z = nan (1024ˆ2 , f) ;
34 for i =1: f
35 Z (: , i) = reshape (u{ i } , 1 ,1024ˆ2 ,1) ;
36 end
37 a = pinv (Z) ∗M;
38

39 w = zeros (1024) ;

15

40 for i = 1 : f
41 W = a (i) ∗U{ i}+w;
42 w = W;
43 end
44

45 rms1 = ((std (nonzeros (NN−W))) ˆ2 ⤦
Ç −(mean(nonzeros (NN−W))) ˆ2) ˆ(1/2) ;

46

47 for i = 1:1024 %a coarse f i l t e r f o r ⤦
Ç o u t l i e r s

48 for j = 1:1024
49 i f data (i , j)−W(i , j)>6∗rms1
50 data (i , j) = 6∗ rms1+W(i , j) ; ⤦

Ç %t h i s f i l t e r i s a b i t ⤦
Ç abrupt

51 e l s e i f data (i , j)−W(i , j)<−6∗rms1
52 data (i , j) = W(i , j) −6∗rms1 ;
53 end
54 end
55 end
56

57 N = reshape (data ,1024ˆ2 ,1) ;
58 Z = nan (1024ˆ2 , f) ;
59 for i =1: f
60 Z (: , i) = reshape (u{ i } , 1024ˆ2 ,1) ;
61 end
62

63 a = pinv (Z) ∗N; %Zernike po lynomia l s ⤦
Ç c o e f f i c i e n t , n o t i c e the s c a l e

64 w = zeros (1024) ;
65 for i = 1 : f
66 W = a (i) ∗U{ i}+w;
67 w = W;
68 end
69

70 W = data−W;
71 rms = ((std2 (W)) ˆ2−(mean2(W)) ˆ2) ˆ(1/2) ;
72 pv1 = max(max(W))−min(min(W)) ; %PV of ⤦

Ç the e n t i r e s u r f a c e (g l o b a l)
73

74 WW = W(512 ,1 : 1024) ;
75 XAM = XAM(512 ,1 : 1024) ;
76 Y=linspace (0 , 4 . 89 , 1024) ;
77

78 subplot (2 , 1 , 1)
79 plot (Y,WW)
80 xlabel (‘X−axis o f the Mirror Sur face ⤦

Ç (mm) ’) , ylabel (‘ Res idua l Height ⤦
Ç (nm) ’)

81 t i t l e (‘ Ca lcu lated Midline ’)
82 axis ([0 4 .88 −0.15 0 . 2])%s e t the range ⤦

Ç o f axes .
83

84 subplot (2 , 1 , 2)
85 plot (Y,XAM)
86 xlabel (‘X−axis o f the Mirror Sur face ⤦

Ç (mm) ’) , ylabel (‘ Res idua l Height ⤦
Ç (nm) ’)

87 t i t l e (‘MicroXAM−Processed Midline ’)
88 axis ([0 4 .88 −0.15 0 . 2 5])
89

90 pv2 = max(max(WW))−min(min(WW)) ; %PV ⤦
Ç o f the l i n e p r o f i l e (l o c a l)

91 aa = [rms pv1 pv2] ;
92 end

Notice that the matrix manipulation called vectoriza-
tion performed from line 25 to line 36, and from line 57 to
line 61 is used previously in Section IV to obtain convo-
lution coefficients for 2D SG filter of 5×5 fitting frame, as
shown from Eq.(47) to Eq.(51). Also, we get non-square
matrices during this operation, so it is necessary to par
attention to condition numbers.

By separately comparing MicroXAM’s results with
those output by orthogonality algorithm and pseudoin-
verse algorithm, I conclude that Gram-Schmidt orthogo-
nalization is too rough (refer to Table I), and all future
modifications will be based on the pseudoinverse algo-
rithm with the 6-SD threshold. For simplicity, we will
refer to this algorithm as “threshold code”.

C. Pseudoinverse Algorithms (with Savitzky-Golay
Filter)

This code contains a 2D SG filter based on the math-
ematics in Section IV.

1 function a = s g f i l t e r (data , f , g , h) %f ⤦
Ç i s the Zernike order ; g i s the ⤦
Ç window s i z e ; h i s the degree o f ⤦
Ç po lynomia l s used in f i l t e r

2 X = linspace (−1+(g−1) /1024 , ⤦
Ç 1−(g−1) /1024 ,1025−g) ;

3 [x , y] = meshgrid (X,−X) ;
4 Z = ones (1025−g) ;
5

6 U = c e l l (f , 1) ;
7 U{1} = Z ;
8 U{2} = 2∗x ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
9 U{3} = 2∗y ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
10 U{4} = (3ˆ(1/2)) ∗(−Z+2∗(x.ˆ2+y . ˆ 2)) ;
11 U{5} = (6ˆ(1/2)) ∗(x .ˆ2−y . ˆ 2) ;
12 U{6} = 2∗ (6ˆ(1/2)) .∗ x .∗ y ;
13 U{7} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗x+3∗x . ∗ (x.ˆ2+y . ˆ 2)) ;
14 U{8} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗y+3∗y . ∗ (x.ˆ2+y . ˆ 2)) ;
15 U{9} = (5ˆ(1/2)) ∗(Z−6∗(x.ˆ2+y . ˆ 2) ⤦

Ç +6∗(x.ˆ2+y . ˆ 2) . ˆ 2) ;
16 U{10} = (8ˆ(1/2)) ∗(x .ˆ3−3∗x . ∗ (y . ˆ 2)) ;
17 U{11} = (8ˆ(1/2)) ∗ (3∗ (x . ˆ 2) .∗ y−y . ˆ 3) ;
18 U{12} = (10ˆ(1/2)) ∗(−3∗x.ˆ2+3∗y .ˆ2 ⤦

Ç +4∗x .ˆ4−4∗y . ˆ 4) ;

16

19 U{13} = (10ˆ(1/2)) ∗(−6∗x .∗ y ⤦
Ç +8∗x .∗ y . ∗ (x.ˆ2+y . ˆ 2)) ;

20 U{14} = (12ˆ(1/2)) ∗(3∗x ⤦
Ç −12∗x . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗x . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

21 U{15} = (12ˆ(1/2)) ∗(3∗y ⤦
Ç −12∗y . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗y . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

22 U{16} = (7ˆ(1/2)) ∗(−Z+12∗(x.ˆ2+y . ˆ 2) ⤦
Ç −30∗(x.ˆ2+y . ˆ 2) . ˆ2 ⤦
Ç +20∗(x.ˆ2+y . ˆ 2) . ˆ 3) ;

23

24 u = c e l l (1 , f) ;
25 for i = 1 : f
26 u{ i } = reshape (U{ i } ,(1025 −g) ˆ2 ,1) ;
27 end
28

29 C = savg (g , h) ;
30

31 Data = zeros (1025−g) ;
32

33 for i = (g+1)/2:1025 −(g+1)/2
34 for j = (g+1)/2:1025 −(g+1)/2
35 A = data (i −(g−1) /2 : i +(g−1) /2 , ⤦

Ç j −(g−1) /2 : j +(g−1) /2) ;
36 Data (i −(g−1) /2 , j −(g−1) /2) = ⤦

Ç sum(sum(A.∗C)) ;
37 end
38 end
39

40 N = reshape (Data ,(1025 − g) ˆ2 ,1) ;
41 Z = nan ((1025 −g) ˆ2 , f) ;
42 for i = 1 : f
43 Z (: , i) = reshape (u{ i } ,(1025 −g) ˆ2 ,1) ;
44 end
45 a = pinv (Z) ∗N;
46

47 w = zeros (1025−g) ;
48 for i = 1 : f
49 W = a (i) ∗U{ i}+w;
50 w = W;
51 end
52

53 rms = ((std2 (Data−W)) ˆ2− ⤦
Ç (mean2(Data−W)) ˆ2) ˆ(1/2) ; %K or ⤦
Ç data

54 pv = max(max(Data−W))−min(min(Data−W)) ;
55 a = [rms pv] ;
56 end
57

58 function C = savg (g , h) %f i s the order ⤦
Ç the user s p e c i f i e d

59 X = linspace (−(g+1) /2 , (g+1)/2 , g) ;
60 [y , x] = meshgrid (X,X) ;
61

62 U = c e l l ((h+1)∗(h+2) /2 ,1) ;
63 U{1} = ones (g) ;
64 for i = 2 : (h+1)∗(h+2)/2

65 n = f loor (((8∗ i −7) ˆ(1/2) −1) /2) ;
66 U{ i } = (x . ˆ ((nˆ2) /2+(3/2)∗n− i +1)) ⤦

Ç . ∗ (y . ˆ (i −(nˆ2) /2−n/2−1)) ;
67 end
68

69 u = c e l l (1 , (h+1)∗(h+2)/2) ;
70 for i = 1 : (h+1)∗(h+2)/2
71 u{ i } = reshape (U{ i } , g ˆ2 ,1) ;
72 end
73

74 j = u{1} ;
75 for i = 2 : (h+1)∗(h+2)/2
76 J = [j u{ i }] ;
77 j = J ;
78 end
79

80 C = pinv (J) ;
81 C = (reshape ((C(1 , :)) ’ , g , g)) ’ ;
82 end

Notice that the matrix manipulations from line 180 to
line 189 are very similar to the manipulations in the steps
to get Zernike coefficients in pseudoinverse algorithm in
Section V.B. As before, we need to pay attention to con-
dition numbers due to the appearance of rectangular ma-
trices.

For simplicity, we will refer to this algorithm as “filter
code”.

D. The Guided Algorithm

For the previous code using SG filter, one problem of
its application is that we have no prior knowledge about
the size of fitting frame. As mentioned earlier, the signal-
to-noise ratio increase as the width of fitting frame [17],
so the RMS will decrease. One practical solution is to
use an adaptive algorithm. We treat the RMS output
by the threshold code as a guide value, and repetitively
run the code with SG filter with increasing frame width.
Once the RMS output by the filter code gets closest to
the guide value, the while loop stops running and outputs
the current frame width.

Then the remaining problem is that we are not sure
which degree of fitting polynomials should we use in SG
filter. Since we barely fit the data with Zernike poly-
nomials up to degree 6 (the 16th term), the reasonable
choice for degree of fitting polynomials in SG filter would
be 2, 3, 4 and 5. Fig.9 shows the line profile through the
middle line of mirror surface at tilt angle 17.81 µrad, ob-
tained by polynomials of degree 2, 3 and 5. As we can see,
the line profiles do not change much as the polynomial
degree increases, then in order to save computation time,
we choose degree 2 for all future calculations. Thus, the
two tuning parameters in SG filter are accounted for.

The guided algorithm below is essentially a combina-
tion of the previous two codes (Section V.A & V.B) with
a better plotting capability.

17

(a) Degree 2

(b) Degree 3

(c) Degree 5

FIG. 9. The comparison of line shapes at 17.81 µrad, obtained
by SG fitting polynomials of degree 2, 3, and 5.

1 function a = ul t imate (data ,XAM, f , h) ⤦
Ç %f i s the Zernike order the user ⤦
Ç s p e c i f i e d ; h i s the power o f ⤦
Ç f i l t e r po lynomia l s

2 M = data ;
3 X = linspace (−1 ,1 ,1024) ;
4 [x , y] = meshgrid (X,−X) ;
5 Z = ones (1024) ;
6

7 U = c e l l (f , 1) ;
8 U{1} = Z ;
9 U{2} = 2∗x ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
10 U{3} = 2∗y ; % n o t i c e the f a c t o r 2 in ⤦

Ç t i l t s
11 U{4} = (3ˆ(1/2)) ∗(−Z+2∗(x.ˆ2+y . ˆ 2)) ;
12 U{5} = (6ˆ(1/2)) ∗(x .ˆ2−y . ˆ 2) ;
13 U{6} = 2∗ (6ˆ(1/2)) .∗ x .∗ y ;
14 U{7} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗x+3∗x . ∗ (x.ˆ2+y . ˆ 2)) ;
15 U{8} = ⤦

Ç (8ˆ(1/2)) ∗(−2∗y+3∗y . ∗ (x.ˆ2+y . ˆ 2)) ;
16 U{9} = (5ˆ(1/2)) ∗(Z−6∗(x.ˆ2+y . ˆ 2) ⤦

Ç +6∗(x.ˆ2+y . ˆ 2) . ˆ 2) ;
17 U{10} = (8ˆ(1/2)) ∗(x .ˆ3−3∗x . ∗ (y . ˆ 2)) ;
18 U{11} = (8ˆ(1/2)) ∗ (3∗ (x . ˆ 2) .∗ y−y . ˆ 3) ;

19 U{12} = (10ˆ(1/2)) ∗(−3∗x.ˆ2+3∗y .ˆ2 ⤦
Ç +4∗x .ˆ4−4∗y . ˆ 4) ;

20 U{13} = (10ˆ(1/2)) ∗(−6∗x .∗ y ⤦
Ç +8∗x .∗ y . ∗ (x.ˆ2+y . ˆ 2)) ;

21 U{14} = (12ˆ(1/2)) ∗(3∗x ⤦
Ç −12∗x . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗x . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

22 U{15} = (12ˆ(1/2)) ∗(3∗y ⤦
Ç −12∗y . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗y . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

23 U{16} = (7ˆ(1/2)) ∗(−Z+12∗(x.ˆ2+y . ˆ 2) ⤦
Ç −30∗(x.ˆ2+y . ˆ 2) . ˆ2 ⤦
Ç +20∗(x.ˆ2+y . ˆ 2) . ˆ 3) ;

24

25 NN = M;
26

27 u = c e l l (1 , f) ;
28 for i = 1 : f
29 u{ i } = reshape (U{ i } , 1024ˆ2 ,1) ;
30 end
31

32 M = reshape (M,1024ˆ2 ,1) ;
33 Z = nan (1024ˆ2 , f) ;
34 for i = 1 : f
35 Z (: , i) = reshape (u{ i } , 1024ˆ2 ,1) ;
36 end
37 a = pinv (Z) ∗M;
38

39 w = zeros (1024) ;
40 for i = 1 : f
41 W = a (i) ∗U{ i}+w;
42 w = W;
43 end
44

45 rms1 = ((std2 (data−W)) ˆ2 ⤦
Ç −(mean2(data−W)) ˆ2) ˆ(1/2) ;

46

47 for i = 1:1024 %a coarse f i l t e r f o r ⤦
Ç o u t l i e r s

48 for j = 1:1024
49 i f data (i , j)−W(i , j)>6∗rms1
50 data (i , j) = 6∗ rms1+W(i , j) ; ⤦

Ç %t h i s f i l t e r i s too ⤦
Ç abrupt

51 e l s e i f data (i , j)−W(i , j)<−6∗rms1
52 data (i , j) = W(i , j) −6∗rms1 ;
53 end
54 end
55 end
56

57 N = reshape (data ,1024ˆ2 ,1) ;
58 Z = ones (1024ˆ2 , f) ;
59 for i = 1 : f
60 Z (: , i) = reshape (u{ i } , 1024ˆ2 ,1) ;
61 end
62 a = pinv (Z) ∗N;
63

64 w = zeros (1024) ;

18

65 for i = 1 : f
66 W = a (i) ∗U{ i}+w;
67 w = W;
68 end
69

70 SD = data−W;
71 rms = ⤦

Ç ((std2 (SD)) ˆ2−(mean2(SD)) ˆ2) ˆ(1/2) ;
72

73 rms2 = rms +0.003;
74 g = 29 ;
75 while abs (rms2−rms /1 .357) >0.002
76 X = linspace (−1+(g−1) /1024 , ⤦

Ç 1−(g−1) /1024 ,1025−g) ;
77 [x , y] = meshgrid (X,−X) ;
78 Z = ones (1025−g) ;
79

80 U = c e l l (f , 1) ;
81 U{1} = Z ;
82 U{2} = 2∗x ; % n o t i c e the f a c t o r 2 ⤦

Ç in t i l t s
83 U{3} = 2∗y ; % n o t i c e the f a c t o r 2 ⤦

Ç in t i l t s
84 U{4} = (3ˆ(1/2)) ∗(−Z+2∗(x.ˆ2+y . ˆ 2)) ;
85 U{5} = (6ˆ(1/2)) ∗(x .ˆ2−y . ˆ 2) ;
86 U{6} = 2∗ (6ˆ(1/2)) .∗ x .∗ y ;
87 U{7} = (8ˆ(1/2)) ∗(−2∗x ⤦

Ç +3∗x . ∗ (x.ˆ2+y . ˆ 2)) ;
88 U{8} = (8ˆ(1/2)) ∗(−2∗y ⤦

Ç +3∗y . ∗ (x.ˆ2+y . ˆ 2)) ;
89 U{9} = (5ˆ(1/2)) ∗(Z−6∗(x.ˆ2+y . ˆ 2) ⤦

Ç +6∗(x.ˆ2+y . ˆ 2) . ˆ 2) ;
90 U{10} = ⤦

Ç (8ˆ(1/2)) ∗(x .ˆ3−3∗x . ∗ (y . ˆ 2)) ;
91 U{11} = ⤦

Ç (8ˆ(1/2)) ∗ (3∗ (x . ˆ 2) .∗ y−y . ˆ 3) ;
92 U{12} = (10ˆ(1/2)) ∗(−3∗x.ˆ2+3∗y .ˆ2 ⤦

Ç +4∗x .ˆ4−4∗y . ˆ 4) ;
93 U{13} = (10ˆ(1/2)) ∗(−6∗x .∗ y ⤦

Ç +8∗x .∗ y . ∗ (x.ˆ2+y . ˆ 2)) ;
94 U{14} = (12ˆ(1/2)) ∗(3∗x ⤦

Ç −12∗x . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗x . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

95 U{15} = (12ˆ(1/2)) ∗(3∗y ⤦
Ç −12∗y . ∗ (x.ˆ2+y . ˆ 2) ⤦
Ç +10∗y . ∗ ((x.ˆ2+y . ˆ 2) . ˆ 2)) ;

96 U{16} = ⤦
Ç (7ˆ(1/2)) ∗(−Z+12∗(x.ˆ2+y . ˆ 2) ⤦
Ç −30∗(x.ˆ2+y . ˆ 2) . ˆ2 ⤦
Ç +20∗(x.ˆ2+y . ˆ 2) . ˆ 3) ;

97

98 u = c e l l (1 , f) ;
99 for i = 1 : f

100 u{ i } = ⤦
Ç reshape (U{ i } ,(1025 −g) ˆ2 ,1) ;

101 end
102

103 C = savg (g , h) ;

104

105 Data = zeros (1025−g) ;
106

107 for i = (g+1)/2:1025 −(g+1)/2
108 for j = (g+1)/2:1025 −(g+1)/2
109 A = NN(i −(g−1) /2 ⤦

Ç : i +(g−1) /2 , ⤦
Ç j −(g−1) /2 : j +(g−1) /2) ;

110 Data (i −(g−1) /2 , j −(g−1) /2) ⤦
Ç = sum(sum(A.∗C)) ;

111 end
112 end
113

114 N = reshape (Data ,(1025 − g) ˆ2 ,1) ;
115 Z = ones ((1025 −g) ˆ2 , f) ;
116 for i = 1 : f
117 Z (: , i) = ⤦

Ç reshape (u{ i } ,(1025 −g) ˆ2 ,1) ;
118 end
119 a = pinv (Z) ∗N;
120

121 w = zeros (1025−g) ;
122 for i = 1 : f
123 W = a (i) ∗U{ i}+w;
124 w = W;
125 end
126

127 rms2 = ((std2 (Data−W)) ˆ2 ⤦
Ç −(mean2(Data−W)) ˆ2) ˆ(1/2) ;

128 g = g+2;
129 end
130

131 WW = Data−W;
132

133 XAMM = XAM((g−1) /2:1024 −(g−3) /2 , ⤦
Ç (g−1) /2:1024 −(g−3) /2) ;

134 XAMN = XAM((1027 −g) /2 , ⤦
Ç (g−1) /2:1024 −(g−3) /2) ;

135 DATA = WW((1027 −g) /2−(g−1) /2 , ⤦
Ç 1:1024 −(g−3) /2−(g−1)/2+1) ;

136

137 X = linspace ((4 . 88/1024) ∗ ((g−3) /2) , ⤦
Ç (4 .88/1024) ∗(1024 −(g−3) /2) ,1027−g) ;

138 [x , y] = meshgrid (X,X) ;
139 Y = linspace ((4 . 88/1024) ∗ ((g−3) /2) , ⤦

Ç (4 .88/1024) ∗(1024 −(g−3) /2) ,1027−g) ;
140

141 subplot (2 , 2 , 1)
142 mesh(x , y , rot90 (WW, 2))%mesh only works ⤦

Ç f o r matrix
143 xlabel (‘X−axis o f the Mirror Sur face ⤦

Ç (mm) ’) , ylabel (‘Y−axis o f the ⤦
Ç Mirror Sur face ⤦
Ç (mm) ’) , zlabel (‘ Res idua l Height ⤦
Ç (nm) ’)

144 t i t l e (‘ Res idua l Topography ’)
145 axis ([0 4 .88 0 4 .88 −1 2])
146

19

147 subplot (2 , 2 , 3)
148 mesh(x , y , rot90 (XAMM, 2))
149 xlabel (‘X−axis o f the Mirror Sur face ⤦

Ç (mm) ’) , ylabel (‘Y−axis o f the ⤦
Ç Mirror Sur face ⤦
Ç (mm) ’) , zlabel (‘ Res idua l Height ⤦
Ç (nm) ’)

150 t i t l e (‘ Processed Topography ’)
151 axis ([0 4 .88 0 4 .88 −2 5])
152

153 subplot (2 , 2 , 2)
154 plot (Y,DATA)
155 xlabel (‘X−axis o f the Mirror Sur face ⤦

Ç (mm) ’) , ylabel (‘ Res idua l Height ⤦
Ç (nm) ’)

156 t i t l e (‘ Res idua l Midline ’)
157 axis ([0 4 .88 −0.15 0 . 2])
158

159 subplot (2 , 2 , 4)
160 plot (Y,XAMN)
161 xlabel (‘X−axis o f the Mirror Sur face ⤦

Ç (mm) ’) , ylabel (‘ Res idua l Height ⤦
Ç (nm) ’)

162 t i t l e (‘ Processed Midline ’)
163 axis ([0 4 .88 −0.15 0 . 2])
164

165 pv = max(max(WW))−min(min(WW)) ;
166 a = [rms pv g −2] ;%(g−2) i s the s i z e o f ⤦

Ç the f i l t e r , not g .
167 end
168

169 function C = savg (g , h)
170 X = linspace (−(g+1) /2 , (g+1)/2 , g) ;
171 [y , x] = meshgrid (X,X) ;
172

173 U = c e l l ((h+1)∗(h+2) /2 ,1) ;
174 U{1} = ones (g) ;
175 for i = 2 : (h+1)∗(h+2)/2
176 n = f loor (((8∗ i −7) ˆ(1/2) −1) /2) ;
177 U{ i } = (x . ˆ ((nˆ2) /2+(3/2)∗n− i +1)) ⤦

Ç . ∗ (y . ˆ (i −(nˆ2) /2−n/2−1)) ;
178 end
179

180 u = c e l l (1 , (h+1)∗(h+2)/2) ;
181 for i = 1 : (h+1)∗(h+2)/2
182 u{ i } = reshape (U{ i } , g ˆ2 ,1) ;
183 end
184

185 j = u{1} ;
186 for i = 2 : (h+1)∗(h+2)/2
187 J = [j u{ i }] ;
188 j = J ;
189 end
190

191 C = pinv (J) ;
192 C = (reshape ((C(1 , :)) ’ , g , g)) ;
193 end

For the order 2 removal (first 9 Zernike polynomials),

there is almost no difference between the degree 2 or 3 of
filter polynomials being used. Hence, for the sake of com-
putation speed, degree 2 is more desired. Also, mathe-
matically, speaking, low degree polynomials best preserve
the original signal [17].

On the other hand, instead of the conventional bivari-
ate, homogeneous polynomials for each degree in Eq.(46),
implemented by line 180-189 in the previous code, it is
possible to utilize a subset of Zernike polynomials with
the same highest order directly. However, the implemen-
tation exhibits this algorithm is more time-consuming
(this local modification is not shown).

VI. DISCUSSION

All data are consecutively obtained from a Zerodur
reference mirror in APS Metrology Laboratory, between
2:53pm and 3:53pm, Central Daylight Time, July 17th,
2013. For each data array, MicroXAM automatically
took four measurements repetitively and output their
arithmetic average. Although in terms of short-term
repeatability (the RMS difference between two succes-
sive maps measured under the same conditions), the op-
timal choice in microstitching process would be 16 [5],
this comes at the expense of extended measurement time
and therefore possibly the stability of the reference mir-
ror. Also, unlike microstitching, during our correction
for measurement errors, we are more concerned about
the central region of the map, so perturbations on Mi-
croXAM such as system noise, air turbulence, temper-
ature fluctuation and mechanical vibrations have much
less influence on the final results. Finally, we only con-
cern about the relative distinctions between different an-
gles, since the main goal is to reduce the measurement
errors at different slopes down to the same level as the
system errors at normal position. Hence, the average of
four measurements is a reasonable choice.

By listing the statistics results from MicroXAM and
code “ultimate” in Table IV, we discovered that the
limit of MicroXAM capability is at around 200 µrad. Be-
yond this angle, we need to remove more than terms of
Zernike polynomials to reduce the residual RMS fluctu-
ation down to the same level as the normal incidence.
These high-order Zernike polynomials have few physical
meanings in terms of classical aberrations, so this fact
dictates the practical limit on metrology.

Dihedral angles between the mirror surface and the z =
0 plane in Table I, II, V, and VI are derived as described
below. Giving two intersecting planes described by Π1:
a1x+b1y+c1z+d1 = 0 and Π2: a2x+b2y+c2z+d2 = 0, the
dihedral angle between them is defined to be the angle α
between their normal direction:

cos θ = a1a2 + b1b2 + c1c2√
a21 + b21 + c21

√
a22 + b22 + c22

. (56)

We denote the Zernike coefficients for x- and y- tilts by
α and β, respectively, then to the first order, the mirror

20

Computational and Measurement Results from the Zerodur Reference Mirror

Angles (µrad) Fringe Numbers Terms Removed
From MicroXAM From the Pseudoinverse Algorithm without Filter

Residual RMS (Å) PV(Å) Filter Window Size Residual RMS(Å) PV(Å)

17.18 0
Order 1 0.651 80.5 21 0.656 13.17
Order 2 0.516 79.9 21 0.518 12.29
Order 3 0.506 79.9 21 0.509 12.24

45.54 1
Order 1 0.602 103 21 0.604 13.05
Order 2 0.546 102 21 0.538 12.64
Order 3 0.521 103 23 0.529 12.60

99.75 2
Order 1 0.728 57.7 25 0.741 14.97
Order 2 0.639 57.7 25 0.649 14.36
Order 3 0.582 57.7 25 0.588 14.00

193.1 3
Order 1 1.03 98.9 29 1.032 20.05
Order 2 0.667 98.9 33 0.652 17.65
Order 3 0.634 98.9 33 0.638 17.61

265.4 4
Order 1 1.35 63.2 31 1.351 25.22
Order 2 0.772 59.6 35 0.746 21.36
Order 3 0.752 59.6 37 0.722 21.30

327.8 5
Order 1 1.64 68.7 31 1.63 29.90
Order 2 0.873 64.0 39 0.816 24.76
Order 3 0.848 64.1 39 0.784 24.69

TABLE V. This is the table of RMS and PV values obtained from MicroXAM interferometer and the threshold algorithm.
“Filter window size” refers to the edge of the 2D square array used to modify the value of the central point. The extent of tilt
is more appropriately described by the absolute angle obtained from Eq.(58), instead of fringe number because practically it is
impossible to obtain an integer number of fringes inside the filed of view. The numbers of fringes are just convenient indicators
during measurements. “Order 1-3” refer to the first 4, 9, 16 terms, Zernike polynomials specified by MicroXAM, as shown in
Fig. 8

surface could be approximated by the equation of a plane:

z = αx + βy + d (57)

where d stands for the offset (piston term). Then the tilt
angle (in radian) with respect to the horizontal surface
z = 0 is just

arccos
1

√
(2α
2444000

)2 + (2β
2444000

)2 + 1
. (58)

Notice that in Eq.(58), both α and β are first multi-
plied by 2 due to the prefactors in the two tilt terms;
then divided by 2444000 because in the code we set the
length of the data array edge to be from -1 to 1, which
corresponds to 4.88 mm × 4.88 mm of the aperture size.
This is a trade-off for accuracy, because as we mentioned
previously that the algorithm is not accurate is we divide
the data array in real scale due to the near singularity of
intermediate matrices.

Since there are three levels of treatments on Zernike
polynomials by MicroXAM (order 1-3 shown in Fig.8),
when calculating the tilt angles, in order to be as accurate
as possible, we use the resulting coefficients α and β from
the fitting to order 3 by the threshold code.

Since the code “ultimate” essentially consists of two
different algorithms (pseudoinverse plus SG filter), it is
highly likely that MicroXAM uses separate algorithms to
output RMS and PV values.

It is possible that some much higher frequency com-
ponents are not suppressed by 2D SG filter implemented

in the filter code due to aliasing. Hence, increasing the
sampling rate beyond 1024 × 1024 is a potential future
improvement.

Notice that in Table V, both RMS and PV values are
with respect to the entire mirror surface. In practice,
however, we often focus more on the statistics along the
slice thought the middle of the mirror. Hence, we need
to take the PV value of the line profile and list them in
Table VI.

Up to now, we have only characterized the numerical
results by statistics, but RMS value does not tell us ev-
erything. In the real fabrication process, it is the surface
geometry that matters, so the final analysis is about the
surface shape. In practice, because the interferometer’s
aperture is constantly scanning, we are only interested
in the central part of the field of view. Hence, we take
a slice through the middle line of the mirror, plot the
line profile, and compare with the profile extracted from
MicroXAM’s processed data. The comparison is sum-
marized in Fig.10, and the major differences occur near
the two ends of the line profiles due to the radial Zernike
polynomials’ oscillatory nature, which is similar to Gibbs
phenomenon in Fourier analysis.

The disadvantage of the utilization of an algorithm
with a global 2D SG filter is demonstrated by the vi-
sualization of the line profiles shown in Fig.11. As one
can see, the output by the algorithm with SG filter is
much smoother than the MicroXAM’s output. Although
the overall trends are similar to each other, there is still
significant in differences in geometry between the line
profiles. Hence, it is not reliable to simply use the fitting

21

Computational and Measurement Results from the Zerodur Reference Mirror
Angles (µrad) Fringe Numbers PV(Å) From the Algorithm with SG Filter

17.18 0
58.5
58.6
58.6

45.54 1
58.6
58.6
49.5

99.75 2
50.2
49.9
50.0

193.1 3
65.4
50.1
50.1

265.4 4
78.5
53.1
53.1

327.8 5
96.2
57.4
57.4

TABLE VI. The PV values obtained from the algorithm with SG filter.

results alone after filtering.
In order to make the line profile output by the algo-

rithm look less smoother, I used the direct result from
the filter as a signal carrier (top right of Fig.11) to carry
the results of threshold code. This additive signal carry-
ing is implemented via modifying line 131 of the guided
code “ultimate” from

131 WW = Data−W;

to

131 WW = ((Data−W) ∗1.5+SD∗1 . 25) /2 ;

The resulting profile in the top right corner of Fig.11
preserves the overall surface trend but not the original
geometry. Hence, this is a hint for the application of
local filter in the future. Notice that this modification
also changes the PV value, but it is not important com-
pared to the geometry of line profiles. Also, the appli-
cation of local filters around the steep spikes provides
a possible explanation for the slight difference between
the RMS values from 6-SD and MicroXAM’s output in
Table V. The future application of local filters might be
able to obtain PV values that are closer to MicroXAM’s
outputs, compared to those given by the global filter in
“ultimate” in Table V.

Since the 2D SG filter is an effective low-pass filter, its
application in the vicinity of scratches or other defects
could provide a new approach to reconstruct a mirror
surface back to the original shape, since the filter pre-
serves the overall surface trends, as shown in Fig.11.

By convolution theorem on multidimensional discrete
Fourier transform, theoretically, it is feasible to replace
2D SG filters in the codes by two successive 1D SG filters,
which operate along the row direction and the column
direction of the data arrays, respectively. So this could
be one future improvement.

As an alternative to Zernike polynomials, the moments
of pseudo-Zernike polynomials are shown to be more ro-
bust and less sensitive to image noise than the moments
of Zernike polynomials [24]. In Cartesian coordinates,
Pseudo-Zernike polynomials are defined as

Vnm(x, y) = Rmn(x, y)ejm arctan(y/x) (59)

where x2 + y2 ≤ 1, n ≥ 0, ∣m∣ ≤ n. The radial polynomials
Rnm are defined as

Rnm(x, y) =
n−∣m∣

∑
s=0

Dn,∣m∣,s(x2 + y2)(n−s)/2 (60)

with integer coefficients

Dn,m,s = (−1)s (2n + 1 − s)!
s!(n −m − s)!(n +m − s + 1)!

(61)

Hence, in future work, one could base all codes on pseudo-
Zernike polynomials,

As a minor digression, I also discovered that without
any special treatment (no 6-SD threshold or filtering)
before fitting, the iterative least-square fitting process
does not increase the accuracy of the final result. The
iterative fitting I explored is described as following (the
explicit code is not provided):

Use the pseudoinverse algorithm to first fit the
central part of the data array, and then replace
the fitted part with output values and repeat
the above process. The final results exhibit an
asymptotic behavior, which might be of a math-
ematical interest.

Although hardly providing possibility to improve ei-
ther numerical accuracy or computing speed, different
algorithms based on other orthogonal matrix decomposi-
tions, QR decomposition for instance (an alternative to
SVD), could be developed in the future.

22

(a) Tilt angle 17.18 µrad (b) Tilt angle 45.54 µrad

(c) Tilt angle 99.75 µrad (d) Tilt angle 193.1 µrad

(e) Tilt angle 265.4 µrad (f) Tilt angle 327.8 µrad

FIG. 10. All figures are residual heights after the removal
of the first 9 Zernike polynomials. The top figures are the
residual heights calculated after removing the first 9 terms
by the threshold code, and the bottom figures are the residual
heights obtained directly from MicroXAM. For each subfigure,
the vertical axis represents the residual height in nanometer,
and the horizontal axis represents the x-axis along the midline
of the mirror.

For future improvement of the MATLAB codes, we
should incorporate several local filters, instead of global
filters, centered at those abrupt spikes/outliers to get PV
values closer to those output by MicrXAM.

Finally, by trying all reasonable combination of the
two tuning parameters g and h of the built-in function
“fspecial (‘gaussian’,[g g],h)” in MATLAB,
we can assert that MicroXAM does not use Gaussian
filter globally or locally since it is impossible to get RMS
value close to that output by threshold code. One possible
reason of not using Gaussian filter is that it is an ideal
time domain instead of frequency domain filter [25].

VII. CONCLUSION

Since PV values given by filter code are different from
those output by threshold code, they are not as important
as RMS values of a mirror surface. If we only focus on

FIG. 11. The comparison of topographies and line profiles at
17.18 µ rad produced by MicroXAM (top) and the filter code
(bottom). The algorithm output uses degree 2 polynomials
for the local fitting in 2D SG filter. The comparison for other
angles are not demonstrated.

FIG. 12. The comparison of topographies and line profiles at
17.18 µ rad produced by MicroXAM (top) and the filter code
(bottom). The algorithm is identical to that which produces
Fig.11, except for the modification of signal carrying. The
comparison for other angles are not demonstrated.

RMS value of the line profile in the middle, as in most
cases, the threshold code has a speed similar to that of
MicroXAM. Since it is fast, its potential future appli-
cation could be involved in adaptive optics. However,
the computation time of filter code and “ultimate” de-
creases with the tilt angle, and could be much slower than
MicroXAM when tilt angle is larger than 200 µrad.

If the numerical recipes presented by this article is
about to be used in microstitching process, it is opti-
mal to take 16 data measurements for averaging by Mi-
croXAM.

Concerning the capability of metrology by ADE Mi-
croXAM RTS microstitching interferometer, if we only
pay attention to the statistics, the upper limit on tilt an-
gle would approximately be 200 µrad, because above this
angle, as shown in Table V, other than removing more
than 16 Zernike terms, there is no way to reduce RMS
fluctuation down to the level at null position.

However, if we further consider the geometry of the
line profile, the upper limit is actually around 50 µrad as
shown in Fig.13. In order to successfully correct measure-
ment errors to the same level as those at normal position,
we require that their residual geometries of line shapes
are close to each other. By comparison, if the tilt is be-
yond 50 µrad, the corrected shape becomes more and

23

(a) Tilt angle 17.18 µrad

(b) Tilt angle 45.54 µrad

(c) Tilt angle 99.75 µrad

FIG. 13. The definitive comparison between different tilt an-
gle after the removal of the first 16 Zernike polynomials.

more different from that at normal position (only 99.75
µ rad is displayed), as shown by Fig.13(c). Hence, the
upper limit is 50 µrad.

The most direct application of the codes developed in
this article is to compensate for the shortage of the out-
put by MicroXAM because this instrument is only capa-
ble of outputting processed data array after the removal
of order 2 Zernike polynomials (the first 9 terms).

VIII. ACKNOWLEDGMENTS

A great thank for my supervisor Dr. Lahsen Assoufid’s
instruction and advice throughout the entire internship.
Thanks for Mr. Jun Qian’s help on measurements and
inspirational comments on my outputs.

The author is also in debt to Prof. Ori Ganor for
helpful discussions about the mathematics of polynomi-
als and low-pass digital filters, to Prof. Holger Mueller,
Prof. Hartmut Haeffnerand and Prof. Dan Stamper-
Kurn for their illuminating hints and tips on data and
error analysis, and to Prof. Virendra Mahajan and Prof.

James Wyant for informing me of numerical subtleties of
Zernike polynomials.

IX. REFERENCES

[1] C. J. Evans, “Compensation for Errors Introduced
by Nonzero Fringe Densities in Phase-Measuring Interfer-
ometers”. CIRP Annuals - Manufacturing Technology,
42(1), p. 577-580 (1993).

[2] M. Born, E. Wolf, Principles of Optics: Electromag-
netic Theory of Propagation, Interference and Diffrac-
tion of Light, 7th Ed, (Cambridge University Press, Cam-
bridge, 1999), p. 907.

[3] R. Courant, D. Hilbert, Methods of Mathematical
Physics, (Interscience Publishers, New York, 1st English
version, 1935), Vol. 1, p. 65.

[4] C. J. Evans, et al., “Visualization of surface figure
by the use of Zernike polynomials”, Appl. Opt., 34(34),
p. 7815-7819 (1995).

[5] L. Assoufid, et al., “A Microstitching Interferometer
for Evaluating the Surface Profile of Precisely Figured
Hard X-ray K-B Mirrors” in Proceedings of SPIE, 2007.,
Vol. 6704.

[6] J. Espinosa, et al., “Weighted Zernike polynomial
fitting in steep corneas sampled in Cartesian grid”. Jour-
nal of Modern Optics, 58(19-20), p. 1710-1715 (2011).

[7] D. Malacara, Optical Shop Testing 3rd Ed., (John
Wiley & Sons, Hoboken, New Jersey, 2007), p. 537.

[8] G. H. Golub, C. F. Van Loan, Matrix Computa-
tions 3rd Ed., (Johns Hopkins University Press, Balti-
more, 1996).

[9] R. Penrose, (1956). “On best approximate solu-
tion of linear matrix equations”. Proceedings of the Cam-
bridge Philosophical Society, 52(1), p. 17-19 (1956).

[10] A. Ben-Israel, T. N. E. Greville (2003). Gen-
eralized Inverses: Theory and Applications, (Springer-
Verlag, Berlin, 2003).

[11] J. R. Magnus, H. Neudecker, Matrix Differential
Calculus with Applications in Statistics and Economet-
rics, 2nd Ed., (Wiley, New Jersey, 1999).

[12] A. Savitzky, M. J. E. Golay, “Smoothing and Dif-
ferentiation of Data by Simplified Least Squares Proce-
dures”. Analytical Chemistry, 36(8), p. 16271639 (1964).

[13] P. Gans, J. B. Gill, “Examination of the Convo-

24

lution Method for Numerical Smoothing and Differenti-
ation of Spectroscopic Data in Theory and in Practice”.
Applied Spectroscopy, 37(6), p. 515-520 (1983).

[14] Y. Katznelson, An Introduction to Harmonic
Analysis, 3rd Ed., (Cambridge University Press, Cam-
bridge, 2004).

[15] S. J. Orfanidis, Introduction to Signal Processing,
(Prentice-Hall, Englewood Cliffs, New Jersey, 1996).

[16] J. Krumm, “Savitzky-Golay filters for 2D Im-
ages”. Microsoft Research, Redmond.
http://research.microsoft.com/en-
us/um/people/jckrumm/SavGol/SavGol.htm

[17] A. Gorry, ”General least-squares smoothing
and differentiation by the convolution (Savitzky-Golay)
method”. Analytical Chemistry, 62(6), p. 570573 (1990).

[18] H. Ziegler, ”Properties of Digital Smoothing Poly-
nomial (DISPO) Filters”. Applied Spectroscopy, 35(1), p.
8892 (1981).

[19] J, B. Conway, A course in functional analysis,
(Springer-Verlag, New York, 1990), p. 67.

[20] R. L. Burden, J. D. Faires, Numerical Analysis,
9th Ed., (Brooks/Cole, Cengage Learning, Boston, Mas-
sachusetts, 2011), p. 470.

[21] D. Lichtblau, E. W. Weisstein, “Condition
Number.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/ConditionNumber.
html

[22] J. Y. Wang, D. E. Silva, “Wavefront interpretation
with Zernike polynomials”, Appl. Opt. 19, p. 15101518.

[23] V. N. Mahajan, “Zernike circle polynomials and
optical aberrations of systems with circular pupils”, En-
gineering and Laboratory Notes supplement, Opt. Pho-
ton. News, 33(1), p. 8121 (1994).

[24] C.-H. Teh, R. T. Chin, ”On image analysis by
the methods of moments”. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 10(4), p. 496513
(1988).

[25] H. J. Blinchikoff, A. I. Zverev, Filtering in
the Time and Frequency Domains, (SciTech Publishing,
Raleigh, North Carolina, 2006).

X. APPENDICES

Notice that Zernike polynomials are listed in the same
order as ADE MicroXAM RTS and all codes. The order
is different from that in ANSI Z80.28-2009 standard.

A. List of the First 16 Zernike Polynomials in
Polar Coordinates [7]

Analytical Forms Optical Interpretations

Z0
0 = 1 Piston

Z1
1 = 2ρ cos θ X-tilt

Z−1
1 = 2ρ sin θ Y-tilt

Z0
2 =
√

3(2ρ2 − 1) Field curvature (defocus)

Z−2
2 =

√
6ρ2 cos 2θ 1° astigmatism at 0°

Z2
2 =
√

6ρ2 sin 2θ 1° astigmatism at 45°
Z1

3 =
√

8(3ρ3 − 2ρ) sin 3θ 1° coma at 0°
Z−1

3 =
√

8(3ρ3 − 2ρ) cos 3θ 1° coma at 90°
Z0

4 =
√

5(6ρ4 − 6ρ2 + 1) 1° spherical aberration

Z3
3 =
√

8ρ3 cos 3θ Trefoil at 0°
Z−3

3 =
√

8ρ3 sin 3θ Trefoil at 90°
Z2

4 =
√

10(4ρ4 − 3ρ2) cos 2θ 2° astigmatism at 0°
Z−2

4 =
√

10(4ρ4 − 3ρ2) sin 2θ 2° astigmatism at 45°
Z1

5 =
√

12(10ρ5 − 12ρ3 + 3ρ) cos θ 2° coma at 0°
Z−1

5 =
√

12(10ρ5 − 12ρ3 + 3ρ) sin θ 2° coma at 90°
Z0

6 =
√

7(20ρ6 − 30ρ4 + 12ρ2 − 1) 2° spherical aberration

TABLE VII. “1°” and “2°” stand for “primary” and “sec-
ondary”, respectively.

B. List of the First 16 Zernike Polynomials in
Cartesian Coordinates

Z0
0 = 1,

Z1
1 = 2x,

Z−1
1 = 2y,

Z0
2 =

√
3(2x2 + 2y2 − 1),

Z2
2 =

√
6(y2 − x2),

Z−2
2 = 2

√
6xy,

Z1
3 =

√
8(−2x + 3xy2 + 3x3),

Z−1
3 =

√
8(−2y + 3y3 + 3x2y),

Z0
4 =

√
5(1 − 6y2 − 6x2 + 6y4 + 12x2y2 + 6x4),

Z3
3 =

√
8(3xy2 − x3),

Z−3
3 =

√
8(y3 − 3x2y),

Z2
4 =

√
10(−3y2 + 3x2 + 4y4 − 4x2y2 − 4x4),

Z−2
4 =

√
10(−6xy + 8y3x + 8x3y),

Z1
5 =

√
12(3x − 12x(x2 + y2) + 10x(x2 + y2)2),

Z−1
5 =

√
12(3y − 12y(x2 + y2) + 10y(x2 + y2)2),

Z0
6 =

√
7(−1 + 12(x2 + y2) − 30(x2 + y2)2 + 20(x2 + y2)3)

	Enhancement of Fabrication of Kirkpatrick-Baez (K-B) Mirror in APS via Improving Metrology by Microscope Inteferometer Stitching
	Abstract
	Contents
	Introduction
	Zernike Polynomials
	An Ordinary Linear Least Square Problem
	Gram-Schmidt Orthogonalization
	Moore-Penrose Pseudoinverse Method
	Numerical Double Integral in Cylinder Coordinates

	Filtering Prior to Data fitting
	Six Standard Deviation Threshold
	Two Dimensional Savitzky-Golay Filter for Data Smoothing

	Implementation of Algorithms
	Orthogonalization Algorithms (without Filter)
	Pseudoinverse Algorithms (with the Threshold of Six Standard Deviation)
	Pseudoinverse Algorithms (with Savitzky-Golay Filter)
	The Guided Algorithm

	Discussion
	Conclusion
	Acknowledgments
	References
	Appendices
	List of the First 16 Zernike Polynomials in Polar Coordinates [7]
	List of the First 16 Zernike Polynomials in Cartesian Coordinates

