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Abstract

At the Advanced Photon Source (APS), an adaptive notch filter is being developed to eliminate
60 Hz harmonic noise in the storage ring radio frequency system. Since the adaptive notch filter
is in essence a feedback control loop, it is prone to instability. The stability of the adaptive notch
filter is analyzed here via the Nyquist stability criterion.

1 Introduction

In particle accelerators, noise in the radio fre-
quency (rf) accelerating voltages causes time jit-
ter and energy fluctuations of the beam. Low-
level rf (LLRF) control systems regulate the
amplitude and phase of the accelerating volt-
age, and thus provide noise suppression over the
closed-loop bandwidth of the system.

However, a major source of noise in the APS
storage ring rf system comes from narrowband
noise at 60 Hz. To reduce this 60 Hz harmonic
noise, an adaptive notch filter is being developed
at the APS [8]. While [8] discussed implemen-
tation and demonstration of the adaptive notch
filter, a stability analysis is provided here.

The adaptive notch filter is implemented as a
feedback control system in which the output of
the system is fed back to the input in order to
correct for disturbances. A block diagram of a
general feedback control system is shown in Fig.
1. Feedback loops are prone to instability (i.e.
for a bounded reference input, the controlled out-
put can become unbounded); thus, when imple-
menting a feedback system its stability must be
analyzed.

Various methods exist for analyzing the sta-
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Figure 1: Depiction of a general closed-loop feed-
back system, with input u and output y.

v

bility of feedback loops in both the time and
frequency domains. In the time domain, for ex-
ample, system stability can be analyzed by ob-
serving the impulse or step response of the sys-
tem and noting whether or not the response is
bounded. In the frequency domain, some of the
various methods include root locus, Bode plots,
and the Nyquist stability criterion.

Due to its graphical nature, the Nyquist sta-
bility criterion is a powerful method, especially
for analyzing high order systems and those with
time delays. Since the noise suppression system
is a very high order system with time delays, the
Nyquist stability criterion was chosen to analyze
its stability.



2 Review of Nyquist Stability

The Nyquist stability criterion is a graph-
ical method that enables the closed-loop
stability of a system to be determined from
its open-loop transfer function. Consider
the feedback system of Fig. 1 where G(z)
and H(z) are represented as rational functions

where Ny(z), Np(z), Dg(2), and Dy(2) are re-
spectively the numerator and denominator
polynomials of G(z) and H(z). The closed-loop
transfer function is given as
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U(z) 1+ H(2)G(2)

(1)

which is expanded as
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In the denominator, D,(z) will always cancel;
hence it will not contribute to any poles of the
closed-loop transfer function. Thus the poles
of the closed-loop transfer function are equiva-
lent to the zeros of 1 4+ H(z)G(z). For discrete-
time system stability, the poles of the closed-loop
transfer function must lie within the unit circle
in the complex plane. This implies that there
can be no zeros of 1+ H(2)G(z) outside the unit
circle.

2.1 Argument Principle

From complex analysis, the Argument Principle
[2,3,6] can be used to determine whether there
are any zeros of f(z) = 14+ H(z)G(z) outside the
unit circle. The Argument Principle starts with
using the following generalized Lucas formula
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represents a meromorphic function with a finite
number of zeros, «;, and poles, p, in some re-
gion €. This generalizes 1+ H(z)G(z) such that
it can include a function v(z) # 0 which is ana-
lytic in €2. This generalization is especially useful
for continuous-time systems for which v(z) can
represent the Laplace transform for a time delay
which is the transcendental function e™*7<. For
discrete-time systems, delays equal to an integer
number of samples simply add additional poles
at the origin.
Next, the following integral is formed
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where v is a simple closed positively oriented
(counter-clockwise) contour on which f(z) is an-
alytic and non-zero. The integrals on the right
are solved via complex analysis techniques [3]
and are of the form

/ dz
v 2= Zo

if z, lies inside . Thus Eq. 5 becomes

1 [ f(z)

2mi J, f(2)

where N, and NN, are respectively the number of
zeros and poles of f(z) inside the contour v as
shown in Fig. 2. The geometric nature of the left

side of Eq. 7 is revealed by considering [6, Ch.
3, Sec. 10]
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Since logf(z) = log|f(z)| + iarg{f(z)} then Eq.
8 becomes
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(6)

= 2m

dz =N, — N, (7)

(9)
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Figure 2: Example contour (v) integration
around poles (x) and zeros (o) in the z-Plane.

Because log|f(z)| is real and single-valued, its
integral around the closed loop y reduces to zero.
However, because arg{ f(z)} is multi-valued, the
integral of d arg{ f(z)} becomes the net change of
arg{f(z)}. Using these results, Equation 7 thus
becomes

iA7 arg{f(z)} = N, — N,

5 (10)

where A, arg{ f(z)} represents the net change of
the argument of f(z) evaluated along the con-
tour . Hence Eq. 10 is known as the Argument
Principle.

By defining a new complex variable w such
that w = f(z), an image contour I' = f(~) will
be traced out in the w-plane as z moves along
the contour v in the z-plane as shown in Figs. 2
and 3. Since 7 is closed, so too is I'. However, I'
need not be simple nor positively oriented.

In the w-plane, A, arg{f(z)} represents the
number of positive (counter-clockwise) encir-
clements that I' makes about the origin, denoted
as no{I'=f(z),0}. Thus Eq. 10 can be written
as

nO{F:f(Z)vO}:No_Np (11)

In the example shown in Figs. 2 and 3, there are
4 zeros and 2 poles inside 7y, therefore I' makes 2
counter-clockwise encirclements about the origin
in the w-Plane.
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Figure 3: Image contour (I') in the w-Plane re-
sulting from the mapping w = f(v).

2.2 Nyquist Stability Criterion

As stated earlier, for closed-loop stability of the
system in Fig. 1, there should be no zeros of
f(2) =14 H(2)G(2) outside the unit circle. An
appropriate contour of integration should enclose
the entire z-Plane outside the unit circle. Such
a contour is shown in Fig. 4 utilizing a cut along
the negative real-axis.
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Figure 4: Contour of integration for discrete-
time system.

For stability, IV, should be zero and Eq. 11
becomes
- TLQ{F, 0} = Ny {F7O} = NP (12)

Because of the negative sign, this states that



for stability the net number of clockwise en-
circlements, n.,, of the origin by the image curve
I" should be equal to the number of poles inside
the positively oriented (counter-clockwise) con-
tour of integration ~.

If poles exist along the contour of integration,
they can be excluded by modifying the contour
with small detours as shown in Fig. 4. The im-
age contour can be formed from a consideration
of f(z) being conformal along the contour. This
conformal property means that angles are pre-
served in the mapping; hence a right-hand turn
in the z-plane corresponds to a right-hand turn
in the w-plane [2,7].

Forming the image of the small detours can be
avoided by extending the argument principle [6,
Ch. 3, Sec. 10]. In the extended principle the
zeros and poles on the contour of integration are
counted with half of their multiplicity in Eq. 10.
While [4,10] claim an original derivation of this,
[6] discussed this much earlier. Since the Nyquist
plots to be shown later display the behavior of
the detours, the half counting technique will not
be utilized.

2.3 — Transformation

z

The contour of integration shown in Fig. 4 is
cumbersome since it needs to enclose the entire
plane outside the unit circle. Fortunately the

PO | .
conformal mapping Z = — maps the entire plane
z

outside the unit circle to inside the unit circle [2,
Ch. 7).
Forming the composite function [1, Ch. 10]

(13)

the zeros and poles of f(z) inside the unit circle
will be taken outside of the unit circle. Similarly,
the zeros and poles outside the unit circle will be
brought inside the unit circle. Thus looking for
zeros of f(z) outside the unit circle in the z-plane
is equivalent to looking for zeros of F'(2) inside
the unit circle in the z-plane.

The contour and region of interest of Fig. 4
transforms to that shown in Fig. 5 in which a
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Figure 5: Modified contour of integration for
discrete-time system.

counter-clockwise contour along the unit circle is
used to satisfy our previous conventions. To use
the argument principle, F (%) is evaluated along
the unit circle 2 = € as 6 goes from 0 to 2.
Along this contour Eq. 13 gives

1 .
ew) = f(e Za)

F(ei®) = f(z - (14)

This means that evaluating F(2) counter-
clockwise along the unit circle is equivalent to
evaluating f(z) clockwise along the unit circle
and vice versa. This is apparent in Figs. 4 and
5. However, somewhat magically the cut and
outer contour of Fig. 4 and forming F'(%) are no
longer necessary. Thus from Eq. 12, for stability

ne AT=F(3=0),0} = no {T=f(2=0),0} = N,

(15)
where 2=0 and z=0 are respectively used to rep-
resent the counter-clockwise and clockwise unit
circle contours in the 2Z-plane and the z-plane,
and N, represents the number of poles of f(z)
outside the unit circle.

2.3.1 Subtlety of the Transformation

There is a subtlety to the above approach which
is worth mentioning since we have not found

1
it in the literature. The mapping z = — also
z

brings zeros and poles of f(z) at infinity to the
origin of the Z-plane, which is obviously inside
the unit circle. For example a zero at «; will
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transform from (z — a;) to (A - ozj> which be-
z

(1 - az)

z

comes . Thus the zero at «; is indeed

1
transformed into a zero at —. However, the

Q;
corresponding pole at infinity of the expression
(z — o) is transformed into a pole at the origin.
Similarly, a pole at pi will transform into a pole

at — and the associated zero at infinity of the
Pk

will be transformed into a
(z - Pk)
zero at the origin.

expression

As Eq. 15 implies, one gets the same num-
ber of encirclements from I'=F(% =) as that
from I'=f(z =0). Although a zero inside the
unit circle may be transformed into a zero out-
side the unit circle, the integral is the same be-
cause the zero at infinity was pulled to the ori-
gin. What works is that the transfer function
f(z) = 1+ H(2)G(2) will have the same num-
ber of poles as there are zeros unless there is
positive feedback with a biproper (same num-
ber of zeros and poles) H(z)G(z) for which the
highest order term in the numerator could can-
cel when performing the addition 1+ H(2)G(z).
In that case, the number of zeros of f(z) will
be less than the number of poles and the system
is unstable and even unphysical (the closed-loop
system would then have more zeros than poles).
The stability condition above will properly catch
this case. In most cases the number of zeros and
poles will be the same, thus the zeros and poles
at infinity that are brought to the origin will can-
cel as well as their contributions to the integral.
In either case, one can safely determine whether
there were indeed zeros a; of f(z) outside the
unit circle.

2.4 Nyquist Plots

A Nyquist plot is a plot of the image contour I"
obtained from the mapping of f(z) along . En-
gineering typically uses a counter-clockwise con-
tour along the unit circle, z=0, when construct-
ing the Nyquist plot for discrete-time systems.
There is nothing wrong with this. Equation 15

is simply rewritten as

no{l=f(z =0),0} = N, (16)
where the net number of counter-clockwise en-
circlements made by I' are counted.
Earlier f(z) was defined such that
F(2) =1+ L(2) ()
where L(z) = H(z)G(z) is the total loop trans-
fer function. Equation 17 implies that f(z) has
the same poles as L(z) and also that L(z) = —1
when f(z) = 0. A plot of f(z) is simply a right
shift of L(z) by 1 unit along the real axis. In-
stead of making this right shift, a Nyquist plot
shows the image contour I' = L(z =0). En-
circlements of the origin by I' = f(z =0) thus
become equivalent to encirclements of the point
—1 by I' = L(2=0). Equation 16 then becomes
no{T=L(z =0),—1} =N,  (18)
For stability, the number of counter-
clockwise encirclements of the point -1 by
the Nyquist plot of L(z=0) must equal the
number of poles of L(z) which lie outside
the unit circle.

3 The Adaptive Notch Filter

The general case of an adaptive noise canceller is
shown in Fig. 6. Noise n pollutes a desired signal
d. A noise reference, x, which is correlated to n
is fed into an adaptive filter A(z). The output of
A(z) is combined with the noisy signal, s = d+n,
to cancel the noise. The filter is adapted in a way
which minimizes the output, €, in the least mean
squares sense. [9].

If the noise source has a broad frequency spec-
trum, many filter coefficients are needed to make
the filter output match the noise. However, if
the noise is narrowband or contains only a sin-
gle line harmonic, the filter can be implemented
as an adaptive notch filter with only two coeffi-
cients, wy and wg, as shown in Fig. 7. The feed-
back loop automatically finds an in-phase and
quadrature component, y; and yg respectively,



¢ —( )
~S" '
NoiseL X hal y
source —» A(2)
L

Figure 6: Depiction of a general adaptive noise
canceller

Figure 7: Block diagram of the two-weight adap-
tive notch filter

of the noise reference which will cancel the noise
at the output.

The open-loop transfer function, H(z), from e
to y is [§]

z (z — cos(w,T))
(zefier _ 1) (Zeier _ 1)

H(z) = uC” (19)
where i = /=1, w, is the noise reference fre-
quency, 1" is the sample time, z is the z-transform
variable, C' is the magnitude of the noise refer-
ence, and p is a loop gain parameter.

The closed-loop transfer function, from s to €,
is given by

E(z) 1
S(z) 1+ H(2)

—iwyT

(ze — 1) (zeinT — 1)
(14 puC?)22 — cos(w,T)(2 4+ uC?)z+1
(20)

Equation 20 describes the desired behavior of the
adaptive notch filter. The transfer function has

a zero at the noise reference frequency w,., thus
eliminating noise at that frequency. The band-
width of the filter is controlled by the noise ref-
erence amplitude C' and the gain pu.

3.1 System Implementation Details

The adaptive notch filter shown in Fig. 7 is
a simplified version of its actual implementa-
tion. The prototype system at the APS uses
many more digital filters and some external ana-
log components. A detailed block diagram of the
system is shown in Fig. 8.

Analog low-pass filters (LPF) are used on the
input signals (reference z and error €) to prevent
aliasing before being digitized by the analog-to-
digital converters (ADC). The signals are sam-
pled at 100kSamples/sec (kS/sec) and then dec-
imated to 10kS/sec. A 57" order LPF is used
prior to the decimation to prevent aliasing. The
digital filtering and decimation relax the require-
ments of the analog input filters.

The decimated reference signal then goes
through a Hilbert transform filter that generates
two output signals which are in quadrature with
each other. The Hilbert transform filter is com-
posed of two separate low-pass type filters one
for each the in-phase and quadrature component.
The coefficients are determined from a 60" order
LPF prototype according to the technique of [5].

Since the outputs of the Hilbert filter are still
broadband, both components go through a 400"
order bandpass filter (BPF) before becoming the
in-phase and quadrature reference signals for the
adaptive filter. This provides extreme selectivity
of the 60Hz harmonic component of interest.

Ideally, the quadrature outputs from the
Hilbert filter have identical amplitudes; however,
in practice they do not. Thus the scalings g; and
gq in Fig. 8 are used to represent an amplitude
imbalance.
difference frequencies generated in the down/up
conversion process (represented as the multipli-
ers) to not cancel in the final output. This can
generate unwanted spectral content in the out-
put signal. In addition to representing the ampli-
tude imbalance from the Hilbert filter, gr and gg
also serve to represent various gain terms that ac-

The imbalance can cause sum and
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Figure 8: Detailed block diagram of the adaptive notch filter.

count for external analog circuitry and the band-
pass filters.

The sampled and decimated error signal also
goes through the 400" order BPF to select the
60Hz harmonic of interest. The scaling repre-
sented by ¢, in Fig. 8 summarizes various gain
terms: gain from the band-pass filter, gain from
the reconstruction and decimation filter, gain
from moving the binary point in the signal’s
fixed-point representation, and gain from exter-
nal analog circuitry.

The error signal also goes through an ad-
justable digital delay with coarse adjustments
in 10kS/sec clock ticks. This delay provides a
means to optimize the loop phase and hence sys-
tem stability.

The error signal is then down-converted by
both the in-phase and quadrature reference sig-
Each of the down-converted signals goes
through an integrator with gain p before being
up-converted and summed together. This digital
sum then goes through the same 57" order LPF
used for the decimation process before being in-
terpolated back to 100kS/sec. Finally the analog
output is generated by the DAC followed with a
reconstruction analog LPF.

nals.

Each component and signal path of the system

was meticulously measured and modeled using
Matlab and Mathematica. The system is repre-
sented by the following open-loop transfer func-
tion H(2)

Gtotal =z (z — cos(w,T'))

H(z) == (ze—#rT — 1) (zeirT — 1)

B(z)L(z)
(21)

pC?
Gtotal = 5= (Q% + 922) Je
277 represents a time delay 7, and B(z) and L(z)

are the transfer functions for the BPFs and LPF's
respectively.

3.2 Stability Analysis Results

The adaptive filter H(z) has poles on the unit
circle but none outside the unit circle. Thus a
detoured contour such as that shown in Fig. 5
is appropriate. For stability of the system, equa-
tion 18 applies as follows
no{I'=H(z =0),-1} =0 (22)
In other words, there should be no counter-

clockwise encirclements of the point -1 made by
the Nyquist plot of H(z).



Figure 9: Nyquist plot for p = 1, a 33 sample
delay, and C = 0.05 V.

Due to the poles on the unit circle, the
open-loop response cannot be directly measured.
Instead, the closed-loop response is measured
and compared to the theoretical closed-loop re-
sponse, 1/(1 4+ H(z)). A Stanford Research Sys-
tems SR-785 dynamic signal analyzer was used
to make the measurements.

For p = 1, a 33 sample delay, and C' = 0.05
V, the Nyquist plot in Fig. 9 shows that the sys-
tem should be stable; the closed-loop response
in Fig. 10 confirmed this. While the experimen-
tal response in Fig. 10 does resemble the the-
oretical response, it exhibits noise near 60 Hz.
This noise was found to be due to the ampli-
tude imbalance from the Hilbert filter. As the
frequency approaches 60 Hz, the uncancelled up-
per or lower sideband gets increasingly close to
60 Hz and makes its way into the bandwidth of
the analyzer’s detection filter.

To correct the amplitude mismatch, a mul-
tiplier was added to the in-phase component.
With the multiplier properly adjusted, the noise
was nearly eliminated as seen in Fig. 11. In
addition to eliminating the noise, the multiplier
slightly increased the open-loop gain.

For a higher system gain of p = 0.8, a 22
sample coarse delay, and a reference signal am-
plitude C = 0.1 V, the theoretical and mea-
sured closed-loop responses are shown in Fig.

12. The predicted magnitude response peaks
more sharply than the measured response. The
predicted phase also does not match the mea-
sured phase near the peak in the magnitude re-
sponse. By adding 3 samples of group delay to
the model, the theoretical and experimental re-
sponses matched each other extremely well as
seen in Fig. 13. This finding suggests that there
are approximately 3 samples worth of group de-
lay in the system that are not accounted for in
the model.

With confidence in the theoretical model hav-
ing been established, it was possible to predict
when the system should go unstable. As an
example, for p = 1.2, a 25 sample delay, and
C = 0.1 V, the Nyquist plot in Fig. 14 shows
that the system should be unstable. We exper-
imentally observed that the system does indeed
become unstable for these settings as evidenced
in Fig. 15.

4 Conclusion and Future Work

We provided a thorough review of the Nyquist
stability criterion for discrete-time systems, cre-
ating a fairly comprehensive review derived from
multiple references. =~ While the criterion for
continuous-time systems is discussed extensively
in the literature, that for discrete-time systems
is rather scant. We also presented a discussion
about the ! transformation pulling zeros and
poles at inﬁnity to the origin; something which
we have not seen addressed in the literature.

An extensive model for the adaptive notch fil-
ter was meticulously developed. After correcting
for a suspected 3 sample delay error, the model
can very accurately predict the closed-loop re-
sponse. Furthermore, the closed-loop response
measurements with the dynamic signal analyzer
can take almost half an hour while the theoreti-
cal calculation takes mere seconds.

There are some areas that can use additional
work. The source of the 3 sample delay error
should be investigated. The amplitude imbal-
ance of the Hilbert filter should also be more
fully explored. Finally, the analysis presented
here was for the 60Hz channel of the noise sup-



pression system. The system consists of addi-
tional channels for other 60Hz harmonics. Sim-
ilar analyses of these additional channels should
be performed. Although in theory these should
all be modeled in parallel, they should be able
to be analyzed independently due to the isola-
tion offered from the highly selective band-pass
filters in each channel.
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Figure 10: Closed-loop responses for u = 1, a 33 sample delay, and C' = 0.05 V.
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Figure 11: Closed-loop responses for u = 1, a 33 sample delay, and C' = 0.05 V with the improved

Hilbert filter.
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Figure 12: Closed-loop responses without corrected group delay for p = 0.8, a 22 sample delay, and
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Figure 13: Closed-loop responses with corrected group delay for u = 0.8, a 22 sample delay, and
C=01V.

h Tek Stop_ | — ]
s T : (
-—— N il
_____________ 1
.!'
1 i
.
T '
/w ll’
i
"
T M[T100ms| A Ch3 F 52.0mV
Tl 200mvV
e ) 1[20.00 %

Figure 15: Oscilloscope screenshot of the system

Figure 14: Nyquist plot predicting instability for going unstable

w=1.2, a 25 sample delay, and C = 0.1 V.
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