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Conclusions

" Conditioning without growth of effective emittance is
possible in a symplectic system.

" Maxwell’s Equations impose some challenging restrictions
on conditioning systems but...

m ..t is possible to construct some theoretical designs that
work in principle.

= [t appears to be difficult (but maybe not impossible) to
achieve the amount of conditioning likely to be required by
real FELs.

®" Non-conventional (laser, laser-plasma) conditioning holds
promise.

= See talk by A. Sessler



The Hamiltonian for an ideal conditioner is straightforward

H=L7+%25
L L

J and z are conserved
Ap=u+xz

AO = kJ

" Since Jis conserved, the effective emittance of the bunch is
preserved

" Since z is conserved, the bunch length is preserved
®" There is a phase advance that depends upon z
"  xis the conditioning parameter:

g—x— 1 4
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There are extreme effects in transverse phase space

" Apg=u+kz

®" For LCLS, x5 um-!

So for o, » 20 pm, there is a variation in phase advance
of order 100 radians along the length of the bunch!

Px

Effect of conditioning on transverse phase-space distribution



How do we construct a conditioning beamline?

" The Hamiltonian for a linear, “smoothly focusing” beamline may
be written:

H = ’uJ+27z§§J

phase advance chromaticity
(per unit length) (per unit length)

" This gives us Az = 2z£J

" Two RF cavities may be used at either end of the beamline
to convert Az to A¢ as follows:

>,

e chromatic beamline

"  Note that the bunch length is no longer preserved!



The beta function can change with energy

2J = ;x° +200p_ + fp?

phase space mismatch along the bunch.
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If g varies with energy, then chirping the bunch introduces a

The action J of each slice of the bunch is preserved, but...
...the effective emittance of the whole bunch is blown up.
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A FODO lattice can be tuned to achieve matching

" 6 quadrupoles in 4 families, with RF cavities at either end.

®"  Track particles with different values of action up to 5 um,
and different z positions, from -2 mm to +2 mm.

= Initial energy deviation 0; final energy deviation proportional to action.
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Detuning the lattice creates a mismatch
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Conditioning can be provided in different ways

" Qur beamline analysis shows us how (in principle) to avoid
growth of the effective emittance while conditioning

= Different types of conditioner can be used in a properly
“matched” beamline, to provide conditioning without growth of

effective emittance
m RF cavities + chromatic "FODO” beamline
= RF cavities + solenoid
= TM,;, mode cavity
= TM;;, mode cavity + sextupoles
® | aser or laser-plasma approaches

" We now consider the amount of conditioning that may be
provided by the first four approaches

® A, Sessler will consider conditioning using lasers and plasmas



Simple schemes provide small amounts of conditioning

For a chromatic conditioner:

Ay . eVpr @pr

E c
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For a solenoid conditioner:
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Specialized cavities also provide “small” conditioning

" For example, TM,,, mode cavity
A. Sessler, D. Whittum, L-H. Yu, PRL 68 3, p.309 (1992)
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We can condition with sextupoles and a TMy,, cavity

A “matched” beam enters the conditioner.

The first sextupole distorts the horizontal phase space.
The phase space is rotated through =/2.

The cavity gives a correlation between x and 6.

The phase space is rotated through a further =/2.

The final sextupole removes the phase space distortion.
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The Sextupole/TMy,, provides stronger conditioning

4

E = %Boxsin(a)t +0)

p— m’c’ Jz(j11)2 ( eb, jz oL R2
o 2 2
e 40 \mc c
Ay _ 1 eB, ) k13 P=IMW  eB,/mc*=12m"
Wy mc’ y = 4000
/ Jfor =5GHz
. L =20m
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passes through the k, l =300 m™
conditioner, with a - T T~ \
different betatron phase
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\ 7/J ) ,
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There are chromatic and other effects to worry about

" |et us track 4100 times through the beamline, including:
= variation in sextupole strength with energy
= chromaticity in quadrupole sections
= z-dependent transverse deflections (from B field) in cavity
" rms bunch length 100 um
= betatron phase advance ~0.5x2n between passes
= conditioner parameters as in the example on the previous slide

15 ¢t

200 -100 0 100 200 300 6 6.5 7 7.5 8 8.5 9 9.5
% [pm] ¥dx [pm]
" [Initial transverse action J = 7.5 ym
®  Conditioning parameter « = Ay/yJ = 1.25 um-!
= Value from single pass increased 4100 times
14



Might this work for LCLS?

7.5 um is five times the nominal emittance
1.25 ym-! is a quarter of the required conditioning, but...
...100 pm is four times the final bunch length

" bunch compression done properly will amplify the conditioning
by the compression factor

isochronous

arcs
conditioning section

G
. plane-swap solenoid .
extraction injection

15



Conclusions

" Conditioning without growth of effective emittance is
possible in a symplectic system.

" Maxwell’s Equations impose some challenging restrictions
on conditioning systems but...

m ..t is possible to construct some theoretical designs that
work in principle.

= [t appears to be difficult (but maybe not impossible) to
achieve the amount of conditioning likely to be required by
real FELs.

®" Non-conventional (laser, laser-plasma) conditioning holds
promise.

= See talk by A. Sessler
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