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Outline:
- Mineral-fluid interface geochemistry

- Extrinsic Heterogeneity
- XSW imaging on imperfect crystals
- Surface X-ray scattering with micro-beams
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- Intrinsic Heterogeneity i I Ve | H :

- Phase and elemental contrast
- Surface x-ray microscopies
scanning probe
full field
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Fundamental Processes in Low-Temperature Geochemistry:
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Fundamental understanding derived mostly from highly homogeneous systems
- direct observations of mineral-fluid interfaces
- molecular-scale structure and processes

— Heterogeneity is a key aspect of many natural systems and processes



Extrinsic Heterogeneity:
-Crystal mosaic, small angle grain boundaries...

Large, perfect single crystals: Large, imperfect single crystals: Polycrystalline:

Calcite (CaCO,) Muscovite mica Weathered Feldspar

Relevant minerals:

- variable quality (mineral to mineral, sample to sample)
- limits range of processes that can be studied
(e.g., with X-ray reflectivity, X-ray standing waves)



Reflectivity

Bragg Diffraction from Imperfect Crystals

Rutile (a-TiO,): Muscovite mica:
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Bedzyk and Cheng, Rev. Mineral.
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Crystal quality of most minerals not sufficient for XSW measurements

- intrinsic measurements need m-sized
- illuminate single crystal grains with u-sized beams

XSW with imperfect samples requires high brilliance source:
- small beam cross section with high collimation



X-ray Standing Waves as a Probe of lon Adsorption Sites
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Fluorescent yield, Y, and bulk Bragg reflectivity, R, measured simultaneously



XSW with Perfect vs. Imperfect Crystals

XSW measurements of imperfect crystals requires high APS brilliance



X-ray Standing Wave Imaging: The Basic Concept®

Each XSW measurement (at H) determines:
F., =f, exp(i2nP,) = [p(r) exp(iHr) dr

f, = “coherent position” = amplitude
P, = “coherent position” = phase

— No loss of phase information!!

Density profile can be obtained by
discrete Fourier summation by:

p(r) = X, F,, exp(iHr)

- No comparison to models

- No a priori assumptions 2
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Directly measures elemental profiles 3 £l
for each element L O

*L. Cheng, et al., Physical Review Letters, 90, 255503 (2003).
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Real-Space Atom Distributions by Fourier Synthesis
Muscovite: KZAI4(Si3,AI)2020(OH)4

Number Density of Atoms (Formula Units)

Direct, real space imaging of elemental distributions with ~1 A resolution
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XSW Imaging Results: Three-Dimensional Imaging of
Adsorbed lon Sites on Rutile*
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*Z. Zhang et al., Surf. Sci. Letters, in press (2004).



u-XSW Imaging Concept

Post-Monos  Horiz. Mirror Vert. Mirror (??)  High Heat Load
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Couple u-beam and XSW Imaging capabilities:
>103-fold gain of useful beam flux with focussing w/r to slitted beam

— Model independent structures with:  ~1 A structural resolution and
~1-10 u spatial resolution (and better?)



Surface X-ray Scattering with u-beams
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Extends X-ray scattering capability to small crystals:
Surface scattering measurements on ~50 p crystals?

Dynamics: dissolution, etc..



Intrinsic Heterogeneity:

Mineral dissolution

Anti-Bragg condition: Dissolution of orthoclase (001):
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Reactive site specificity (step vs. terrace) controlled by pH



Intrinsic Heterogeneity:

Heterogeneous mineral nucleation

Gibbsite/muscovite (001

L

Bimodal distribution of particle size and shape
Nagy et al., GCA 63, 2337 (1999)



Intrinsic Heterogeneity:

Phase stability vs. particle size

surface area (m’/g)
50 100

-
(o))

e N4
Titania (TiO,) §/

-

(kd/mol)
o Pt

enthalpy w.r.i. bulk rutile
.

0 4000
surface area (m'/mol)
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A Surface X-ray Microscope:

Spatially resolve heterogeneous interface structures

X-ray optics: ~100 nm spatial resolution
X-ray reflectivity: Phase contrast for A-sensitivity to nano-structures
X-ray fluorescence: Elemental sensitivity (scanning probe mode)

Scanning probe mode: better resolution
spatially resolve fluorescence

Full field imaging: ‘big picture’
real-time processes?




Phase Contrast from Elementary Steps:
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Phase Contrast from Crystal Termination:

Data and Model Calculations: Orthoclase (001)
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*P. Fenter and Park, Phys. Rev. B, in review (2003)



Elemental and Structural Contrast (scanning mode):

X-ray beam
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Chiarello and Sturchio,
GCA 58, 5633 (1994)
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— Correlate surface morphology, crystal phase, and elemental composition



Summary:

Micro-beams coupled with high resolution X-ray reflectivity and/or
XSW :

- Yields new capabilities, broadly applicable to geochemistry,
environmental, chemical, and materials sciences

~A structural resolution with ~p spatial resolution

- Transend “complexity gap” between homogeneous model systems
and heterogeneous ‘real’ systems

- Can be done at planned facilities (e.g., Nano-CDT) or built as
dedicated instrument (e.g., at BESSRC, Enviro-CAT...).
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