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• Introduction: Bright beam ⇒ Bright 
Future

• The Applications
2. Photoinjector for Storage-Ring
3. Femto-second Electron Diffraction

• Challenges in High-brightness Beam R&D
1. Issues in photoinjector R&D: stability and reliability; 
theoretical understanding; thermal emittance;beam based 
optimization.

2.  New electron sources: CW source for ERL, High-
frequency RF gun, DC pulse gun, laser plasma source, 
longitudinal emittance compensation.
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We all agree that, brighter of the beam, and it is better off. 
But …
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Performance of Damping Ring – KEK ATF
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XFEL vs Linear ColliderXFEL vs Linear Collider
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XFEL vs Linear ColliderXFEL vs Linear Collider

M. Brandin et al, CLIC Note 543 (2002)



Brookhaven Science Associates
U.S. Department of Energy

RF Photoinjctor For Storage RingRF Photoinjctor For Storage Ring

There more than 70 storage rings operating around 
the world, and  more than 10 in the various 
stages of development:

50 MeV – 2 GeV linac injector using either 
thermionic gun (including  thermionic RF gun ). 

1. For existing ring: life time ~ 8 hours
2. New ring: top-off operation
Photo injector will improve the performance and 

new capabilities (FEL (SASE,HGHG), 
Coherent THz, Femto-second X-ray).
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Why Photoinjector for Storage Ring?Why Photoinjector for Storage Ring?

Benefit:
1. Reduce radiation hazard.
2. More efficient injection.
3. Better Control
4. New science , new user communities
Concern:
1. Stability and reliability?
2. Cost?



Brookhaven Science Associates
U.S. Department of Energy

9 GeV 9 GeV ee−− pulsed pulsed 
extractionextraction

3 GeV 3 GeV ee++ pulsed pulsed 
extractionextraction

chicane located chicane located afterafter
PEPPEP--II extractionII extraction

‘‘RTLRTL’’

‘‘scavengerscavenger’’ bunch bunch 
(e+ production) (e+ production) 
passes through passes through 
chicanechicane

Routine interleaving of multiple energy beams on a pulse by pulsRoutine interleaving of multiple energy beams on a pulse by pulse basise basis

J. Hastings on LCLS II
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MARC ROSS of SLAC for NLC Jan, 
2003 News Letter
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Phtoinjector
for T2 (Table Top or 2 tables) system

Phtoinjector
for T2 (Table Top or 2 tables) system

•Beam Physics
•Soft X-ray Source
•Coherent THz source
•Pulse Radiolysis

Femto-second 
Electron Diffraction
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Ultrafast Temporal Resolution

• Picosecond Timescale:
• Structures of Short-Lived Species
• Kinetic Processes
• Rotational Coherences

• Femtosecond Timescale:
• Coherent Processes (Transition State)
• Potential Energy Surfaces 

fs
kT

100≈=
hτ Figure from Zhong et al. 

Chem. Phys. Lett. 298 (1998) 129-140
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Femtosecond Spectroscopy Electron Microscope

pump
pulse

probe
pulse

Time
Delay

Supersonic
Molecular Beam

TOF-Mass Spectrometer

Detector
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Time Delay (ps)

C2F4I2 C2F4I + I C2F4 + I + I

fs+structure =femtosecond
electron diffraction
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Why Electron Diffraction?Why Electron Diffraction?

Both electron and X-ray 
have been used for 
structure determination, 
electron diffraction has the 
following advantages:

• Charge distribution
• Larger cross section 

(~106).
• Surface structure
• Gas sample
• Compact.

X-ray diffraction: 

Electron diffraction: 

Lx =
i

∑ e i s ri

Le = Z j
j

∑ e i s R j −
i

∑ e i s ri



Brookhaven Science Associates
U.S. Department of Energy

UED-3 Apparatus (CalTeC)

•• Typically use ~Typically use ~33--5 5 psps ee-- pulses (25,000 epulses (25,000 e-- per pulse)per pulse)
•• Overall time resolution: ~5 Overall time resolution: ~5 psps

Advance largely due to laser
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Total Time Resolution

• the temporal pulsewidth of laser beam (∆tlaser) 
• the temporal pulsewidth of electron beam (∆te) 
• the velocity-mismatch (∆tVM)
•Timing jitter between the laser and electron beam (∆tjitt )

(∆t)2 = (∆tlaser)2 + (∆te)2 + (∆tVM)2 + (∆tjitt)2 .

∆tlaser = 10 fs to 100 fs, 
∆te ≈ 5 ps
∆tVM ≈ 1.5 ps (40 KeV), < 100fs (>1.5 MeV).
∆t < 100 fs

To realize fs electron diffraction, ∆te <100fs
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Why Photocathode RF gun 
for Femto-second Electron Diffraction

Why Photocathode RF gun 
for Femto-second Electron Diffraction

• Higher energy ⇒ Smaller 
space charge effect, 
shorter bunches.

• Bright Beam – at least one 
order magnitude brighter 
than thermionic source.

• Flexibility  due by 
controlling the laser and 
RF gun phase

• Cheaper than MV electron 
microscope
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Femto-second Electron beam Femto-second Electron beam 
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Emittance: 1 – 0.1 mm-mrad for 
electron 106 – 105 ( at least factor 
of ten or more than DC)

Pulse length – 200 – 100 fs
(factor 20 to 50 shorter)

Energy spread: 0.01 to 0.1%
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Possible Issues - Timing 
Jitter
Possible Issues - Timing 
Jitter

Energy vs. initial phase for 
Ecathode=25.50,100Mv/m
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Possible Issues – spot size, energy 
and beam divergence
Possible Issues – spot size, energy 
and beam divergence

Lateral IncoherenceLateral Incoherence
Due to finite eDue to finite e--beam divergencebeam divergence

α = 0

α > 0

Can not be Can not be 
solved simply by solved simply by 
increasing L.increasing L.
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Femtosecond electron diffraction at 
the BNL DUV-FEL facility

Femtosecond electron diffraction at 
the BNL DUV-FEL facility

Solenoid 
lenses

Translational stage or 
electric means for time 

delay

Molecular 
beam Detection 
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DUV-FEL EquipmentsDUV-FEL Equipments
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Proof of Principle Experiments

To demonstrate the feasibility To demonstrate the feasibility femtosecondfemtosecond electron electron 
diffraction using photocathode RF gun, we propose diffraction using photocathode RF gun, we propose 

•• Thin metal film (e.g. Al)Thin metal film (e.g. Al)
•• Gas sample (e.g CClGas sample (e.g CCl44 or CFor CF33I)I)
•• Single crystalSingle crystal

First observe diffraction pattern, then First observe diffraction pattern, then 
develop timedevelop time--resolved diffraction. resolved diffraction. 
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Challenges in High-Brightness R&DChallenges in High-Brightness R&D
Improvement of Present electron sources:
• Stability and Reliability
• Timing jitter and its control
• Better theoretical Understading
• Thermal Emittance – fundamental limit and importance 

of beam instrumentation
• Beam based laser optimization.
Next Generation Electron source:
1. CW injector –DC, RF, SRF, what should be? 3H - Heat, 

Heat and Heat;
2. High-Brightness Beam pulse source – 6-D optimization;
Higher frequency gun, pulse DC gun, laser plasma source, 

longitudinal emittance compensation
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Stability and ReliabilityStability and Reliability

Laser system –
technology and 
environment
Photocathode –
Life time and 
uniformity
RF gun –
breakdown and 
field stability
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200 fs Yb:glass oscillator

λ(um)        P (mW) τ(FWHM, fs)         

1.051 136 150

1.047 117 177

Timing jitter: < 200fs (detector 
limited)
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Quantum Efficiency MeasurementsQuantum Efficiency Measurements
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Timing Jitter Timing Jitter 
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RF Photoinjector TheoryRF Photoinjector Theory

• Are all emittance uncorrelated?

K-J.’s theory:

Emittnace growth (Rieser):
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Emittance Optimization 
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Thermal EmittanceThermal Emittance
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Example of measurement for Cu-cathode (Courtesy of W. Graves)

Nonlinear fit gives βrf=3.1+/-0.5, 
Φcu=4.73+/-0.04 eV, and Ek=0.40 eVLinear fit gives Ek=0.43 eV

ICFA/BD Sardinia July 2002
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Mg thermal EmittanceMg thermal Emittance
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Why 1 nC ?
World wide FEL Saturation Performance

Why 1 nC ?
World wide FEL Saturation Performance
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Experimental data 
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Electron beam Based Laser OptimizationElectron beam Based Laser Optimization
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BNL NSLS Gun Workshop 
(1/2001)

BNL NSLS Gun Workshop 
(1/2001)

• High QE Green or Red 
Cathode.
• 2 ½ Cell  low temperature RF 
gun
•DC and RF gun both capable of 
CW operation.
Dc: 10  mm-mrad
RF: 1.0 mm-mrad
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LANL & AES CW Photoinjector

Solenoid

RF input 
coupler, 1 MW

New 703 MHz
CW Photoinjector
Under design
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SASE FEL  for 30 keV (From BES GFEL presentation, Kim, JBM,JG)

• LCLS reference parameters:
λ = 8 keV, λu = 3 cm, K = 3.7, Ip = 3.5 kA, Ee = 15 GeV,
∆E/E = 0.01%, εn = 1.2 mm mrad,   Lsat = 100 m

• Vary K, εn, and Ee

• It pays to strive for an ultra-low emittance e-beam.

600.1121

400.1303.7

1300.5303.7

3001.2303.7

L sat
(m)

εn
(mm-mrad)

Ee
(GeV)

K

shorter undulatorshorter undulator

shorter undulator
and shorter linac
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High Brightness Electron InjectorsHigh Brightness Electron Injectors
500 kV Spring-8 DC Injector

BNL RF Photoinjector

Type DC Gun RF Gun GreenField
E [MeV] 0.5 5 5050
G[MV/m] 10 100 500500
τ [ps] 500 10 <1
Ip [A] 10 100 500
Q [nC] 0.5 1 <0.5
εn [µm] 1 1 0.1

How to create the Greenfield FEL injector?
•• Optimize 6Optimize 6--D phase space, not just D phase space, not just εεnn or or IIpp

•• To realize this the GFEL injector should To realize this the GFEL injector should 
achieve:achieve:
G > 500 MV/m ,         E > 50 MeV
in order to produce and preserve the beam. 
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Higher frequency → Brighter beam?Higher frequency → Brighter beam?

Field gradient ∝ f1/2

B ∝ f1/2  ?
Terminal E ∝ 1/f1/2     for the same cell No. 
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Pulser System Schematic w/ Diagnostics

Pulse Generator
1 MV, 1 ns

Laser Triggered
Spark Gap

Excimer Laser
248 nm

250 mJ, 10 ns

Ti: Sapphire
266 nm 

60 µJ, 300 fs

Photocathode

Solenoid

BPM 1

BPM 2

900 kV, 1 ns Voltage Pulse

Courtesy of J. Smedley of Instrumentation
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Pulsed Power PhotoinjectorPulsed Power Photoinjector
System Capabilities

Voltage Range: 
350 - 900 kV, 1 ns FWHM

Cathode Laser:
60 µJ, 300 fs FWHM, 266nm 

System Jitter: <1 ns
Accelerating Gradient: >1 GV/m

Results
Photoemission:  > 60 pC from 300 fs laser 
Current Density: >100 kA/cm2 

Focal Spots: σ ~ 100µm
Best Norm. Emittance [measured]:

0.7 mm-mrad
(400 keV beam, 400 MV/m, 5 pC, 300 fs)

Simulated Emittance (similar parameters):
0.35 mm-mrad

At a 1 GV/m gradient, simulations predict: 
Emittance is thermally dominated for current 
densities up to 25kA/cm2 (50A from 
.25mm radius cathode spot)

Maximum current density (Child’s Law]:
380kA/cm2

Emittance Measurement Ongoing
Typical Focal Spot 

(σ=130µm)

Courtesy of J. Smedley of Instrumentation
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HV pulser
2.5 MV , 1 ns

Cu photocathode

Microbunch
Goal:100 pC, 100 fs,
10 MeV

3 GHz, 100 MV/m 
cavity Laser pulse

50 fs, 100 µJ,
260 nm

Coaxial incoupling
10 MW RF

TUE-Pulser
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Longitudinal Emittance CompensationLongitudinal Emittance Compensation
A technique of optimize 6-D emittance of electron beam produced 

by photocathode RF gun, by proper choosing the laser and 
electron beam parameters, this technique is capable of 
produce kilo-Ampere, mm-mrad electron beam.

It involves three steps:
1. Electron beam launched at lower RF gun phase,  compress 

beam and set up right energy chirp.
2. Ballistic compression in the drift space
3. RF focusing in the linac by off-crest acceleration.
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Why Photocathode RF GunWhy Photocathode RF Gun
Energy vs. initial phase for 
Ecathode=25.50,100Mv/m
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Longitudinal EmittanceLongitudinal Emittance

)cos(
2
1

0
3 φσε φφ ≈

60

80

100

120

140

160

10 15 20 25 30 35

Lo
n

gi
tu

di
na

l e
m

itt
an

ce
 [a

rb
.]

rf gun phase [deg.]

y = M1*cos(M0/180*3.14)*M0^ ...

ErrorValue
0.000505030.0033596m1 

8.176555.677m2 
NA162.98Chisq
NA0.97814R

200

300

400

500

600

700

0 50 100 150 200 250

y = 184.45 + 1.9152x   R= 0.97052 

L
on

gi
tu

di
na

l e
m

itt
an

ce
 [a

rb
.]

Bunch charge [pC]



Brookhaven Science Associates
U.S. Department of Energy

BuncherBuncher

head

tail
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DUV-FEL Facility

1.6 cell gun 
with copper 

cathode

75 MeV

Bend

50 m

5 MeV

Bend

DumpDump

Coherent IR
diagnostics

Time domain
diagnostics

Undulators Linac tanks

210 MeV

Bunch compressor
with post accel.

30 mJ, 100 fs
Ti:Sapphire laser

NISUS 10m
undulator
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10 fs kilo-Ampere 
Electron beam generation
10 fs kilo-Ampere 
Electron beam generation

20pc,100Mv/m,drift=3.05,12.0degree,8ps,R=
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Electron Beam Properties as 
function of the Charge
Electron Beam Properties as 
function of the Charge
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SummarySummary
The DOE BESAC subcommittee On 20-Year Basic Energy Sciences 
Facilities Roadmap: 
“The evolution of light sources toward diffraction limited radiation at high energy, to sub-

picosecond photon pulse lengths, and with FEL operation places increasingly stringent demands 
on the three dimensional phase space density of the electron beam. For linear accelerators, 
these performance requirements translate directly into the necessity of smaller emittance, higher 
charge bunches generated at the electron gun. In addition, increased repetition rates at the gun 
allow higher average flux, multiple undulator end stations, and ultimately the generation of 
storage-ring-class currents in energy recovery linacs. Also, with lowered emittance, the resulting 
higher gain will enable important cost savings. For example, undulator lengths and electron beam 
energy could be reduced”. 

“The critical enabling technology to advance linac-based light sources is 
the electron gun. At low repetition rates, the present RF photocathode technology generates 
1 mm-mrad normalized emittance bunches with a charge of a nanocoulomb at 100 Hz repetition 
rates.”
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