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Four Decades of Superconducting RF Cavities
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oA NEW METHDD OF ELECTROPOLISHING NIOBiUM *

H.DIEPERS, O,SCHMIDT, H. MARTENS and F, 5. 5UN -
Research Laboralories Evlangen of Siemens AG, Gam_auy y

By & new method of electropolishing niobium we bave obtained \rar¥ amooth nurmces. in slectro- |
010

. polishad TEg1j~cavitles with an ancdic oxide {ilm a @-value of 3 %1

and & eritical magnetio field

of B0 mT were ob.mlnad in the X-band without any heat-treatment,. . - .. . -

There are two ways of producing microscopic= -
ally smooth and damage-free {inishes on niobium, .

namely by chemical and electrolytic polishing.

Mechanical methods can produce smooth finishes, -

but only with 2 high concentration of lattice de~ -

fects and impurities. Where shapes are compll-/ -

cated, chemical polishing has its limitations

since the specimens have to be immersed in the

solution under defined conditions of solution

““flow ete. Local disturbance of the solution flow

T . results in etching instead of polishing at such

points. In such a case, electropolishing is to be
preferred. The potential distribution between the
anode and the cathode can generally be adapted to
the geometry of.the speclmen (anode).

A large number of electropolishing solutions
are known [1,2], which would point to the fact
that a special method is necessary for a specifle

geometry or a specific physical state of the nio- .

bium. However, the methods employed so far

" . have the dlsadvantage that etching is observed

when removing layer thickness of, for instance,
100 um. In many cases, however, it is neces-
a . far the comnlete removal of damage
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" Fig. 1. Electropolishing niobium current oscilintions,

in the above-mentioned voltage range. Fig. 1

' shows the typleal characteristic of this oscillu~ ~ '

tl~ 1. The voltage assoclated with the current os-
¢ ations must be controlled at a constant value.

(EP collaboration between ANL and
Karlsruhe)

Paul Markovich — ANL chemistry

Helical Nb resonator developed at ANL for a heavy-ion linac.
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Four Decades of Superconducting RF Cavities

T i e et

1.3 GHz p=1 DESY

345 MHz =0.63 ANL
B Recent convergence of interest in SCRF community; similar techniques now required for all cavities

B Bulk niobium is the material of choice for today’s high-performance SC cavities




Outline

|. RF surface

e.g. roughness, oxygen, hydrogen

ll. Practical Considerations (The current state-of-the-art)

e.g. electropolishing, high-pressure rinsing, facilities




|. RF Surface: Properties in Bulk Niobium Cavities

Surface Roughness
Surface Morphology Gra.n Size

E- beam Welds
Fleld Emission

Purity (RRR)

m
Surface Chemistry

Partlcle Contaminants

Oxide, Sub-oxides

Rf loss — Quench




|. RF Surface: Surface Resistance, RF losses, Quality Factor

Surface resistance modeled
Rs = Rgcs (T, @) + Rees [nQ] as T, om-dependent term plus
everything else

Power dissipated in the
1 ) cavity walls is product of
Pix :§§ R[H| dAlWatts] local R, and the magnetic
field squared over the cavity
surface

, Quality factor as for classical
Qint = U _ UoE e 2 damped oscillator; stored
AU Py energy divided by fractional

energy loss per cycle




|. RF Surface: (Simplified) Niobium Surface
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£ NbO, (x < 1)

---------------

( Nb,O. %

&ww —
iiiiiiiiiiiiiiiiiii

B Water, hydrocarbons adsorbed to the surface
B Several nm of Nb,O. reforms rapidly even for low partial pressures of O,
B Metallic NbO, clusters Reference[1]
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|. RF Surface: Surface Roughness

Magnetic Field Lines
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B Surface magnetic fields are enhanced when current runs along a (grain boundary) step
B Thermally stable regions of enhanced losses lead to a lowering of observed Q
B Low surface roughness likely to be key to achieving very high Q Reference[2]
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l. RF Surface: Grain Size and E-beam Welds

AT
B Shown is a (typical) electron beam weld through 3 mm niobium sheet

B Surface is before final chemistry
M Visible features: Fine grains2 (50 um rms), large grain®, scratches¢, defectd
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|. RF Surface: High Purity (RRR) as a method to increase
the quench field
B Early SC cavities used RRR~40 (reactor grade)

Today SC cavities use RRR~200 or higher

Carbon, Nitrogen, Oxygen — 10 ppm

Titanium, Hafnium, Zirconium, Tungsten — 50 ppm

Tantalum, Molybdenum — 500 ppm

Hydrogen — 1 ppm

$00 Quench Field vs Defect size
~RRR=10 | Reference[3] e ——
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|. RF Surface: Hydrogen and “Q-disease”
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Phase diagram for the Nb-H system (Schober and Wenzl 1978)

B Niobium readily picks up hydrogen

B At room temperature hydrogen distributed throughout (Nb in a-phase fcc)

B At moderately low temperatures (50-150 K) hydrogen in niobium forms hydrides — Rf loss

B Below 50 K hydrogen is immobile

Reference[4]




|. RF Surface: Example of Hydrogen Q-disease

— 1 l 1 ' 1 I | l 1 I 1 I 1 -
T=2K
10 -
107E% 4 , , 5
- . . A A L Test #1 Fast (-1 hr.) cooldown 2
- - u - A A -
- L - A T
o ] .. ‘.‘
Q 10°F o =
- Test #3 Fast (~1 hr.) cooldown =
8
10 )
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E,cc (MV/m)
B Dwelling in the hydride formation region leads to increase rf losses
B Performance (mostly) recovers after recycling to room temperature Reference[5]




|. RF Surface: Field Emission

B Tunneling of electrons at a metal surface through a potential barrier in the
presence of an applied electric field

B Fowler-Nordheim tunneling, J~E2exp(-K/E)

B Manifests in SC cavities by the presence of x-rays, primarily bremsstrahlung
from electrons striking the cavity walls

B Experimentally known to be mostly due to loosely attached particulates on
the RF surface — i.e. dust

B Microscopy studies at emitter sites show Ag, Al, C, Ca, ClI, Cr, Cu, Cs, F, Fe,
In, K, Mg, Mn, N, Na, Ni, O, S, Si, Ti, W, Zn Reference[6]

B Amount of field emission is largely determined by final steps in preparation of
the RF surface and does not represent a fundamental limit




|. RF Surface: Example of Field Emission from Particulate
Contamination, spoke cavity @ 4 K
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B Field emission turns on rapidly after onset (here @ E,-c~5 MV/m)
B Quench (thermal instability) often induced by field emission




|. RF Surface: Processing of Field Emission

B Emitters may be destroyed using high-power pulsed processing
B RF power of several to hundreds of kilowatts in millisecond pulses

B Processing may be enhanced by the introduction of helium gas (0.1-1x10 Torr) into the
cavity vacuum

20 um

Reference[7]




|. The RF Surface: High-field Q-slope
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B Theoretical basis not fully understood

B May be due to oxygen diffusion; hydrogen is not the cause
B High-field Q-slope is improved (single-cell 1.3 GHz here) with an in-situ bake
B Bake parameters: 120° C for 48 hours typically in vacuum

Reference[8]
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ll. Practical Considerations:

B There are dozens of primary steps and
hundreds of minor steps in the fabrication of a
real SC cavity — almost any one of these has
the potential to destroy the SC performance




ll. Practical Considerations: A Summary of the State-of-
the-Art in Cavity Processing

B Specification, procurement, QA of (high RRR) niobium

B Fabrication

»Die forming

»Milling

»Wire EDM trimming
»Electron beam welding

M Electropolish to remove surface damaged layer (100 um)

B Bakeout at high temperature (600-800° C) to degass hydrogen
B High-pressure rinsing with ultra-pure water

B Clean room drying and assembly

B Many other possible intermediate steps determined by cavity type,

performance goals, technical capabilities

»Final light chemistry
» Ultrasonic cleaning
»Methanol rinsing
»In-situ 120°C bake




Il. Practical Considerations: Recipe for EP
cllE's

Acid level

Single cell cavity EP

Cathode

®  Process: Developed by Siemens for SC cavities in the early 1970’s
®  Anode: Niobium cavity

Cathode: High purity Al (1100, 3000 series or similar) roughly tailored to the
cavity shape; cathode area 10% or more surface area of Nb

Anode-cathode potential ~ 12-18 Volts

Acid composition 85:10 mixture of 96% H,SO,, 40% HF, reagent
Temperature 25-35° C (e.g. chilled water through a hollow cathode)

Duty cycle: Continuous for e-cell geometries, intermittent (1 min on 1 min off)
Average anode current density ~40 mA/cm?

Acid sheer velocity at niobium surface ~ 1 cm/s




ll. Practical Considerations: Fundamental Aspects of EP

Characteristic

Canonical Voltage vs. Current Measured Voltage vs. Current

. roughness
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B A plateau in the I-V curve corresponds to the formation of a viscous layer

® High points are preferentially removed when in the EP regime = smoothing
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2Nb + 5S0,~ + 5H,0 — Nb,O, + 5S0O,~ + 10H* + 10e-
Nb,O, + 6HF — H,NbOF, + NbO,F - 0.5H,0 + 1.5H,0

NbO,F - 0.5H,0 + 4HF — H,NbF; + 1.5H,0 Reference[9,10]




ll. Practical Considerations: EP adaptable to various
shapes

Quarter-wave




ll. Practical Considerations:
Electropolished Triple-Spoke Resonator: RF surfage area
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ll. Practical Considerations: EP cathodes

- Elliptical Cavity Cathode

Spoke Cathode ='- Plate Cathode

am |

- B Hand wound
' cathodes from
" 3003 Al
tubing (left,
,, middle)

/8 W Single 1.3"0OD
& high-purity
aluminum tube

(right)




ll. Practical Considerations: Differential electropolishing
due to orientation of niobium surface
0.129

—e— Spoke 1
— Spoke 2

0.127 \ —&— Outer Cylinder
N \\\\ ny
NN

0 50 100 150 200

o

BEY

N

an
»

Niobium Thickness (mil)

o g\g

Number of Cycles

B Cavity surface removal measured using a ultrasonic thickness gauge
B Cauvity flipped after each 50 cycles (1 cycle = 1 minute)
B Twice the surface removal for downward facing surfaces as for upward facing surfaces




ll. Practical Considerations: HPR to Remove Particulates
From an Electropolished Niobium Surface (1750 PSI)

B Particulates are the most important cause of field emission

40 u

B Adhesion forces bind particulates to the cavity surface
B A high velocity water jet (150 m/s) effectively remove particulates

B Practical limit ~ 1 um Reference[11]
-adhesion forces scale as particle diameter, mechanical force scales as particle area




Il. Practical Considerations: Limitations of HPR

P
<«

v

1. A BCP surface showing 10 um-sized particulates
2. After rinsing at high-pressure water at 1750 PSI; small particulates remain
3. After handling with hands, cleaning with ethanol and drying

A
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ll. Practical Considerations: High-Pressure Rinse Hardware

HPR nozzles HPR pump

118

fIIJIIiIIJI|I\|‘| |['1'1l‘\l”‘l‘1' 1 1 1 TW
Hﬁ!ll’ilrJr!\lll\\]t\lnwlnw\l tbd VertICaIHPR'Corne”

Deionized water systém |
Stainless steel or sapphire tipped nozzles
Filtration on high-pressure sized of the pump

Spray wand, clean room area

Reference[12]
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ll. Practical Considerations: High-Pressure Rinse of an
ATLAS Split-ring

1 | | | |
10 @® After electropolish and RF conditioning in 1984
10 ¥ 17 years operation and indium contamination, August 2001 =
A Aiter High-pressure rinse and RF conditioning August 2001
P Aagp g o A
10 et RN
 natelt SV — = et ®
%3 ~ 1 a\S
; 352w
10 PRl B
10 A | | | |
0 1 2 3 4 5 6
E, (MV/m)

B Robust nature of SRF technology; HPR after
17 years operations

B The highest Q (>6x10° at 2 K)

B Highest cw accelerating fields (6.8 MV/m at 2
K, Epgax=34 MV/m)

B | owest surface resistance (Rges=2.7 NQ2)




ll. Practical Considerations: Effect of Hydrogen Degassing

B T=1.9K (After 600 °c bake)
EREEE g g i
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B Baking at 600-800°C in order to degas hydrogen is required in
order to achieve the lowest possible rf losses

A T=1.9K (Before 600 °C bake)

E,cc (MV/m)




ll. Practical Considerations: Cavity Performance
Residual Surface Resistance vs. Bpgai
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Il. Practical Considerations: Joint ANL-FNAL Single Cavity

Processing Facility
= ' == ' “—E
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B Total Cost with manpower ~$2 M
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IIl. Practical Considerations:’ANL Portion-of the Chemistry
Facility
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Il. Practical Considerations: ANL-FNAL Shared
Infrastructure

DI Water System Chiller/EP Supply




ll. Practical Considerations: Electropolish Hardware for 9-
cell 1.3 GHz C_aV|t|es

Features

Horizontal EP

Cleanable — no sulfur buildup
Aluminum heat exchanger

Fast fill/lempty

Direct Water Cooling (upgrade)
Direct experience for FNAL/ANL

personnel
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