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Description of a Beam

B An ensemble of particles with similar phase space coordinates is called a beam

B The position and momenta are usually sufficient to describe the motion (spin
and charge)

B We can choose a reference particle for which the motion 1s know (reference
curve or design orbit)

B We can uniquely define a coordinate system attached to the reference particle

B Motion of a particle = Motion of the reference particle + Motion in relative
coordinates

B The arc length S along the reference orbit is used as the independent variable




Motion of Reference Particle
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z
dX
— = —sin (0)
ds
dz h(s)
R 0
p cos (6)
d_gzh(s): _ (Exjsin (8) +H{Ezos ()
ds Xm0 X e0

B Motion of the reference particle is restricted to a plane

B p,is afixed momentum and V, and z are the velocity and the charge of the
reference particle




Relative coordinates
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B X and y are the position of particle in relative coordinates

M a and b are the momentum slopes, E is the total energy, | a length like coordinate

B p, 1s a fixed momentum and E, and t; are the energy and the time of flight of the
reference particle




ODE’s of motion
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What is a Transfer Map?

The transfer map M relates Z (so) to Z (s)

Z (s) = M (s0,5) (Z (s0))
e For a deterministic system the transfer map is the flow of ODEs

dz

% :f(2,8>

e Transfer maps are origin preserving M (6) =0

e M (s1,52) 0 M/ (sg,51) = M (s0,52)
e Transfer map of any Hamiltonian system satisfies symplectic condition

e Lor weakly non-linear systems, like an accelerator system, the map can be
expanded as a Taylor series (Taylor Map)

e Due to practical limitations we have to truncate the map at certain order




Second order Taylor map for a dipole (2D)

1 in (hL)? in (2L
xy = [cos(hL)lx; + 5 sin (hL)a; — Wﬁ + Sm(z—h)xiai
cos(hL)- (1 —cos(hL)) 5 (1 —cos(hL)) ,
+ a; — b;
2h 2h Zf
in (hL i L

af = —hsin(hL))z; + cos(hL)a; — > (2h )a? — %b?
yr = yi+ Lb;+sin(hL)xz;b; +[(1 - C(;IS (hL))}ibi
by = b = (Xaaayab)

B For the case of h=1.666 and hL=59 degrees and

vy = (0.5150381); + 0.5143004a; — 0.612279827 + 0.4414738x;a; + 0.0749321a? — 0.1454886b

ay = —1.428612z; + 0.5150381a; — 0.4285837a; — 0.4285837b?
yr = y; +0.6178466b; + 0.8571673x;b; ibi
by = b
X¢ af Y¢ bf X Yr by
[0.5150381 -1.428612 0.000000 0.000000 1000
0.5143004 0.5150381 0.000000 0.000000 0100
0.000000 0.000000 1.000000 0.000000 0010
0.000000 0.000000 0.6178466 1.000000 0001
~0.6122798 0.000000 0.000000 0.000000 2000
0.4414738 0.000000 0.000000 0.000000 1100
0.7493216E-01-0.4285837 0.000000 0.000000 0200
0.000000 0.000000 0.8571673 0.000000 1001
0.000000 0.000000 0.000000 0101
-0.1454886  -0.4285837 0000000 0.000000 0002
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Maps for known fields

Beam Physics
ODE’s
. . Magnetic
Pertu;bat;\cl)zfgl alytic 47’ and/or Electric /
PP field information

Taylor Map of
Order <3

B Method can be used to compute transfer map of order < 3

B Analytic or local Taylor expansion (multipole decomposition) of the magnetic
field should be specified

B Present/future accelerators require much higher order description




Obtaining Maps using DA

B DA methods were introduced to compute maps to in principle arbitrary

order

B Analytic formula or local expansion of the field should be specified

Beam Physics
ODE’s

\ 4

Differential
Algebra
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DA Integrators
ODE Integrators
(Runge-Kutta)

Magnetic
and/or Electric
field information

Taylor Map




Maps from measured field data or source distribution

B Usual practice: Magnetic field 1s approximated by an analytic model. Fringe
fields are treated separately

B High resolution spectrographs, LHC (and future HEP accelerators) require
magnets to be modelling to high accuracy

B However, high accuracy require the use of realistic fields obtained from
— experimental measurements
— 3D FEM magnet modelling codes like TOSCA
— the knowledge of current coil configuration and shielding

B Methods in use:

— Using field data on the mid-plane or on the central axis (unstable, large
€rror)

— Methods using image charge (inversion of large matrix, lot of guess work)

B Current methods can not obtain high accuracy maps directly from the
measured data or the source distribution.




Goal

Beam Physics
ODE’s

Differential
Algebra

\ 4

DA Integrators
ODE Integrators
(Runge-Kutta)

Taylor Map

Measured
¢ field data and/or
' Source data

..........................................................

Magnetic
and/or Electric
field information

.......................................................................

B Local expansion of the field from measured data (Laplace BVP)
B Local expansion of the field from current distribution (Biot-Savart Law)




(1) The Laplace BVP

V?¢ () = 0 in the bounded volume  C E?
Vo (r) = g () on the surface 0f)

What are we looking for 7

e Provide solution as local expansion of the field ( ¢ (?) and 07 ¢ (?))

e Highly accurate and work for case with large variation of field in the region
of interest

e Computationally inexpensive

e Provide information about the field quality of measured data

Analytic closed form solution can only be found for few problems with

certain regular geometries (separation of variables method, power series, finite
Fourier transform)




Numerical Methods
e Finite Difference, Finite element methods

— Numerical solution as data set in the region of interest
— Relatively low approximation order
— Often large number of mesh points and careful meshing required

— Usually multipole expansion of the field can not be computed
e Methods using surface data

— Boundary integral methods and source-based field models

* Require knowledge of Green’s function for the problem

*x Field inside of a source free volume due to a real sources out-
side of it can be exactly replicated by a distribution of fictitious
sources on its surface. Error due to discretization of the source
falls off rapidly as the field point moves away from the source.

— Methods using the Helmholtz theorem




2D Laplace equation

V?¢ (¥) = 0 in the bounded volume Q C [E*

Using Cauchy’s formula

b(0)= ¢ 2,

2 Jaq 2 — @

« is a point within 2

Cauchy’s formula is an integral representation of f which permits us to
compute f anywhere in the interior of 92, knowing only the value of f on

Q

Kernel is smoothing

Simple extension does not exist for 3D




The Helmholtz Theorem

H
Any vector field B that vanishes at infinity can be written as the sum of
two terms, one of which is called “irrotational” and the other “solenoidal” as

L[ (@) B(@), 1 [V-B(&)

b (T) = _/ n :ci > Tg ds — . jcv AV
AT Joq  |¥ — T4 Am Jo | — Xy

AT Jaq T — X AT Jo |F— Xy

0 is a surface which bounds the volume (2
Zs and I, denote points on 92 and within )

V denotes the gradient with respect to ,
n is a unit normal vector pointing away from 0f)




e If B is the magnetic/electric field in the source free region, we have V x
o> =
(Zy) =0and V- B (Z,) =0, and the volume integral terms vanish

Ddl

o ¢, (%) and fft (Z) are completely determined from the normal and the
tangential field data on surface 0f2 via

A T — X
| [ () x B
A7) = -+ [ TE) X B,
AT J9q T — T
- g = —
B (%) =V X At (T) + Von (T)
e The Helmholtz theorem can be used to find field directly from the surface

field data

e Integral kernels that provides interior fields in terms of the boundary fields
or source are smoothing

e Since the expressions are analytic, they can be expanded at least locally




Implementation

Split domain of integration 02 in to smaller regions I';, i =1... N
Describe the surface element I'; in two variables 7s (s, ys)

Expand the kernel to higher orders in two surface variables (xs,ys) and
the three volume variables (x, y, 2)

The dependence on the surface variables (zs,ys) are integrated over sur-
face sub-cells I';, which results in a highly accurate integration formula

The dependence on the volume variables (x, y, z) are retained, which leads
to a high order finite element method

By using sufficiently high order, high accuracy can be achieved with a
small number of surface elements

Implemented using the high-order multivariate differential algebraic tools
available in the arbitrary order code COSY INFINITY

— local expansion, surface integration, curl and divergence

— Field representation to any order without any manual computations




Analytic example: Bar magnet

BY

=
R -.:\."\Lis_\:i‘\__
S

e Interior of the magnet: —0.5 < x < 0.5, |y| < 0.5, and -0.5 < 2 < 0.5

e Analytic solution for the magnetic field are know
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Analytic Solution

) i}

Bo s X, Z; X, Z;

By, (z,y,2) = o ,L.;l (—1) arctan <Y+ . R;;- + arctan v Ri_j
2 - _
By i+ Zj +
Ba: (.I',y,Z) — E Z (_1> i In (Z] 4 R—i
ij=1 i ij
2 - _
By itd X;+ Ry
Bz (.I',y,Z) — E Z (_1> i In (X] 4 R-i
i =1 i ij

1
where X, =x—z;, Yy =y £y, Z; =2z — z;, and R?;:(Xf?"‘YjQ"‘Z?t)Q

e Using the analytic formulas we specify magnetic field on the surface en-
closing the volume of interest

e We use the Helmholtz method to compute the field inside

e We compare the results with the analytic formulas (three plots)




Performance of surface integration method

B Choose a cube of edge length 0.8m centered at origin

B Each face is covered by 44x44 mesh (surface elements)

Log(Error)

-16

I
Error at point (0.0,0
Error at point (0.1,0.1,
Error at point (0.2,0
Error at point (0.3,0

Order




B Split the cube into 4x4x4 volume elements of width 0.2

B Express magnetic field in each volume element by a local expansion about the
center of the element

B The RMS average error for 1000 points

- T T
o RMS Error at point (0.0,0.0,0.0) —+—
B RMS Error at point (0.1,0.1,0.1) ——-X-—-
P RMS Error at point (0.2,0.2,0.2) ---%---

B Tl B RMS Error at point (0.3,0.3,0.3) —8-— 4

(RMS error)
on
T

Log

Order

A

Argonne

NATIONAL LABORATORY



B Dependency of the average error on the number of volume element.
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Parallel implementation

B Contribution due to each surface element is independent of the other surface elements
B The large summation over all the surface elements can be parallelized

B NERSC (National Energy Research Scientific Computing Center) IBM RS6000 Seaborg
Cluster consisting of 6080 processors

— 380 computing nodes with each node having 16 processors (shared memory pool of 16 to
64 GBytes)

— Communication between the processors within a node is much faster
B Implementation

— (NPR processors) = (N2 groups)X(N1 processors)

— NI=INT(2VNPR)

— Two parallel loop are used to make the summation efficient and also minimizes cross-
communication




(2) Magnetic field due to arbitrary current distribution

B Magnetic field due to arbitrary current distribution 1s computed using the Biot-
Savart law or Ampere’s law

B [mplementation 1s similar to the Laplace solver case

Discretize the domain into current elements

DA framework is developed to describe a current element for the line,
surface and volume case

Expand the kernel for the Biot-Savart law or Ampere’s law

Integrate with respect to the variables describing the current elements
Sum over all the current elements

B The curl and the divergences for the field computed is always zero in the current
free region.




Tools

Due to their frequent use in the accelerator magnet applications, a dedicated set of tools has
been written in the code COSY INFINITY for

— Infinitely long rectangular cross section current wire(2D design)
— Finite length rectangular cross section current wire
 Current coil of rectangular cross section (3D design)

In addition to extracting the transfer maps these tools can be used to design magnets




Complete Picture: Map Extraction

; Measured
¢ field data and/or
Source data

...............................................

. Helmholtz Theorem : .
Beam Physics And/OR Differential

ODE’s Biot-Savart Law Algebra

A\ 4 \4

DA Integrators Maanetic
Differential ODE Integrators _ g .
Algebra (Runge-Kutta) ) andfor Electric
g g field information
\ 4
Taylor Map

In the case of measured data we will be constrained by the quality
(accuracy, divergence, curl free etc) of the data

A

Argonne

NATIONAL LABORATORY



Check: Transfer map for analytic quadrupole magnet case
Quadrupole example: B (x,y,s) = (kqy, kqx, 0)
e Transfer map from quadrupole field is know

e From the analytic formulas we create surface data and extract transfer
map

e Difference between the map computed using the analytic formulas and
surface data
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-.7T127632E-13 —-.7115693E-12 .0000000E+00 .0000000E+00 .0Q000000E+00 100000
-.4718448E-14 —-.7105427E-13 .0000000E+00 .0000000E+00 .0000000E+00 010000
.0000000E+00  .0O000000E+0Q0  .7149836E-13 .7143869E-12 .0000000E+00 001000
.0000000E+00  .0000000E+00 .4718448E-14 .7127632E-13 .0000000E+00 000100
.0000000E+00  .0000000E+00 .0000000E+00 .0000000E+00 -.7057580E-15 200000
.0000000E+00  .0000000E+00  .0000000E+00 .0000000E+00 .3560542E-13 110000
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.0000000E+00  .0000000E+00 .0000000E+00 .0000000E+00 -.3588926E-13 001100
.3667199E-13 —.7027697E-15 .0000000E+00 .0000000E+00 .0000000E+00 100001
LAT32326E-14 . 3557007E-13 .0000000E+00 .0000000E+00 .0000000E+00 010001
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.0000000E+00  .0000000E+00 .0000000E+00 .0000000E+00 -.2400857E-14 000200
.0000000E+00  .0O000000E+00 -.4787837E-14 -.3571015E-13 .0000000E+00 000101
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(1) Design of quadrupole magnet with an elliptic cross
section

For beam wider in the dispersive plane than the transverse plane it is cost efficient to
utilize magnets with elliptic cross sections

* 18 superconducting racetrack coils (£103A/m?)
» Rhombic prism support structure (elliptic aperture 1:2)




* "+" produces a positive multipole term

* Inner wires produce quadrupole and octupole fields
 Outer wires produce hexapole and decapole fields

* 2D case: two Infinitely long current wires

* 3D case: Current Coil

Dipole coil

Hex coil

+ Deca caoll
Quad coil
/ +
012 m Deca coil
/ +

Quad coil

0.25m

0.5m

&

Using DA we can make the currents as parameters and find the functional dependence
Of the multipole components on the coil currents.




The relationship between the currents and the principle multipole compo-
nents can be given by a simple matrix

[P 0 025 —0.04 +0377] T '
B, 1576 4+2.40 ] 0 0 0 Ol
(Bl | = 0 0 —3.89 —208 —1.45 || (HI
BY —0.40 +15.44 | 0 0 0 DI
BY 0 0 FL.66 —232 +299)| | I |

Yy _ Yy x _ Yy
y( " e 3 Ty B (yza)
_ T(zzyy) _ py Yy T _ x _ ARY
6 - B(yyyy) - B(wwww) (xzzy) — T (zyyy) — 4B(a::13:13:13)
r Yy




Operational Plot

Quadrupole VS Octupole Hexapole VS Decapole
20 T T T T T T T T T

15F - RS SETER SASATTRERERE: O TS e

tof---- - T FTTA MRS S MY S TR s [ IO

B e S

T T 8

e g - o B

R e o

Octupole Cofficient (x%)
(=]
!
Decapole Coefficient (x)

T S S PP Ty YT ko S PR RPN PPN

15 ----- ""'"—"'_"—‘—'—.—v-'—-—o_._. o i n
. A S S S S S S S . ; ; ; : ; ; ;
-10 -8 -6 -4 -2 0 2 < 6 8 10 -8 -6 -4 -2 0 2 4 6 8

Quadrupole Cofficient (x) Hexapole Coefficient ( xz}

Quadrupole and the octupole terms Hexapole and the Decapole terms

*The coefficients are computed at the horizontal half aperture
*The current density was varied between £10°A/m?
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3D Design: Fringe field

0 m. Only the magnetic field in

The plot of the magnetic field on the midplane, y
the first quadrant 1s shown.
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(2) MAGNEX spectrometer dipole magnet

\ Magnetic field data is measured on the
R AN grids for 7 different planes
<AB/B, >=5x104




Contour plot of magnetic field errors for the mid-plane (region 1)

Log(Error)

Computational error in B, component
-3.6
-15 I Y J——
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(3) Super-FRS Quadrupole Magnet

UNITS

Length m
Magn Flux Density T
Magn Field Adm

Magn Scalar Pot A
Magn Vectar Pot  Wh/m
Elec Flux Density C/m?

Elec Field W/m
Conductivity S/m
Cument Density Aimz
Power W
Farce M
Energy J

PROBLEM DATA
crsf_2op3

TOSCA Magnetostatic
Mondinear materialz
Simulation Mo 1 of 1
87740 elements

367338 nodes

1 conductor

Modally interpolated fields

Local Coordinates
Crigin: 0.0, 0.0, 0.0
Local XYZ = Global XYZ

V- VECTOR FIELDS

B The TOSCA model for the quadrupole magnet AB/B =70 x10-4

B Length of 0.8 m with the usable horizontal aperture of £0.2 m and the vertical aperture of
0.1 m

B The surface was discretized with a step size of 5 mm, leading to a discretization of
80x40x320 surface elements.
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The difference between the relative error of the y component of the magnetic field
on the mid plane for first quadrant

Log{Difference in relative emor) Computational error in By component
I
_4 . J—

-3.5

-3
.Y R—
A e

'}{ a:-c.is. {m)




B The RMS average difference between the TOSCA simulation result and the new
Laplace solver technique versus the volume element length

1 I I I I I I
For the point (0.0,0.0,0.0 —
For the point (-0. 1 -0.025 0.2) -
For the point (-0. 2 -0.05,-0.4) - k-
ok For the point (-0.3,-0.075,-0.6) = - i
:'E
-1 F .
°
w . _
@
o
o
2
&
s 3 F .
o
2
4 | .
51 .
_6 1 1 1 | 1 1
-8 7 6 -5 4 3 2 1

log2(volume step size)
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Extracted Transfer map to second order

-0.4705674 —-1.394826 0.000000 0.000000 0.000000 100000
0.5581815 -0.4705674 0.000000 0.000000 0.000000 010000
0.000000 0.000000 3.837901 4.272580 0.000000 001000
0.000000 0.000000 3.213394 3.837901 0.000000 000100
0.000000 0.000000 0.000000 0.000000 1.000000 000010
0.000000 0.000000 0.000000 0.000000 0.3989286 000001
0.1284348E-14 0.1535115E-14 0.000000 0.000000 -0.4476261 200000
0.1159401E-14 0.9402369E-15 0.000000 0.000000 0.4865291E-01 110000
-0.1197808E-14-0.3977569E-14 0.000000 0.000000 -0.1627172 020000
0.1930759E-13 0.5931886E-13 0.000000 0.000000 —2.059670 002000
0.3353931E-13 0.9565057E-13 0.000000 0.000000 -3.9332563 001100
0.4768188 -0.4891389 0.000000 0.000000 0.000000 100001
0.1259816 0.4768188 0.000000 0.000000 0.000000 010001
0.000000 0.000000 —1.858375 —0.9955222 0.000000 001001
0.1398535E-13 0.3825810E-13 0.000000 0.000000 —1.984025 000200
0.000000 0.000000 —2.589889 —-1.858375 0.000000 000101
0.000000 0.000000 0.000000 0.000000 —0.2995974 000002
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(4) CARABU electric sextapole magnets (work in progress)

B The CAlifornium Rare Isotope Breeder Upgrade
B Sextapole magnet are dominated by fringe fields

H-MAK 0400 m




Conclusion

Using of DA methods multipole expansion solution of the field to high order can
be obtained. Which also leads to small number of volume elements

Using the surface data and Helmholtz theorem leads to technique that are
naturally smoothing

Design of accelerator magnets is possible with the tools developed

The DA frame work developed can be used for other PDEs for which the
solution can be expressed as an integral equation




; Measured
field data and/or
Source data

Smoothing/Corrections

———

Helmholtz Theorem . .
Beam Physics And/OR Differential

ODE’s Algebra

Biot-Savart Law

A\ 4 &
DA Integrators .
Differential ODE Integrators A Magnetic
Algebra (Runge-Kutta) < and/or Electric
i : field information
A\ 4
Taylor Map
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