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Description of a Beam

An ensemble of particles with similar phase space coordinates is called a beam

The position and momenta are usually sufficient to describe the motion (spin 
and charge)

We can choose a reference particle for which the motion is know (reference 
curve or design orbit)

We can uniquely define a coordinate system attached to the reference particle

Motion of a particle = Motion of the reference particle + Motion in relative 
coordinates

The arc length S along the reference orbit is used as the independent variable
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Motion of Reference Particle

Motion of the reference particle is restricted to a plane
p0 is a fixed momentum and v0 and z are the velocity and the charge of the 
reference particle
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Magnetic rigidity

Electric rigidity

ODE’s for reference particle



5

Relative coordinates

x and y are the position of particle in relative coordinates 
a and b are the momentum slopes, E is the total energy, l a length like coordinate
p0 is a fixed momentum and E0 and t0 are the energy and the time of flight of the 
reference particle
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ODE’s of motion

No time dependence of the field
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What is a Transfer Map?
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For the case of h=1.666 and hL=59 degrees and 

xf af yf bf xfaf yf bf

Zi Zf

Z = (x,a,y,b)

Second order Taylor map for a dipole (2D)
By
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Maps for known fields

Method can be used to compute transfer map of order ≤ 3
Analytic or local Taylor expansion (multipole decomposition) of the magnetic 
field should be specified
Present/future accelerators require much higher order description
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Order ≤ 3
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Obtaining Maps using DA

DA methods were introduced to compute maps to in principle arbitrary 
order
Analytic formula or local expansion of the field should be specified
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Maps from measured field data or source distribution

Usual practice: Magnetic field is approximated by an analytic model. Fringe 
fields are treated separately
High resolution spectrographs, LHC (and future HEP accelerators) require 
magnets to be modelling to high accuracy
However, high accuracy require the use of realistic fields obtained from

– experimental measurements
– 3D FEM magnet modelling codes like TOSCA
– the knowledge of current coil configuration and shielding

Methods in use:
– Using field data on the mid-plane or on the central axis (unstable, large 

error)
– Methods using image charge (inversion of large matrix, lot of guess work)

Current methods can not obtain high accuracy maps directly from the 
measured data or the source distribution.



12

Goal 

Local expansion of the field from measured data (Laplace BVP)
Local expansion of the field from current distribution (Biot-Savart Law)
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(1) The Laplace BVP

Analytic closed form solution can only be found for few problems with
certain regular geometries (separation of variables method, power series, finite 

Fourier transform)
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Numerical Methods
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2D Laplace equation
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The Helmholtz Theorem
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Implementation
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Analytic example: Bar magnet
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Analytic Solution
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Performance of surface integration method

Choose a cube of edge length 0.8m centered at origin
Each face is covered by 44x44 mesh (surface elements)
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Split the cube into 4x4x4 volume elements of width 0.2
Express magnetic field in each volume element by a local expansion about the 
center of the element
The RMS average error for 1000 points
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Dependency of the average error on the number of volume element.
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Parallel implementation
Contribution due to each surface element is independent of the other surface elements
The large summation over all the surface elements can be parallelized
NERSC (National Energy Research Scientific Computing Center) IBM RS6000 Seaborg 
Cluster consisting of 6080 processors

– 380 computing nodes with each node having 16 processors (shared memory pool of 16 to 
64 GBytes)

– Communication between the processors within a node is much faster
Implementation

– (NPR processors) = (N2 groups)X(N1 processors)
– N1=INT(2√NPR)
– Two parallel loop are used to make the summation efficient and also minimizes cross-

communication
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(2) Magnetic field due to arbitrary current distribution

Magnetic field due to arbitrary current distribution is computed using the Biot-
Savart law or Ampere’s law
Implementation is similar to the Laplace solver case

– Discretize the domain into current elements
– DA framework is developed to describe a current element for the line, 

surface and volume case
– Expand the kernel for the Biot-Savart law or Ampere’s law
– Integrate with respect to the variables describing the current elements
– Sum over all the current elements

The curl and the divergences for the field computed is always zero in the current 
free region.
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Tools

Due to their frequent use in the accelerator magnet applications, a dedicated set of tools has 
been written in the code COSY INFINITY for

– Infinitely long rectangular cross section current wire(2D design)
– Finite length rectangular cross section current wire

• Current coil of rectangular cross section (3D design)

In addition to extracting the transfer maps these tools can be used to design magnets
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Complete Picture: Map Extraction

Beam Physics 
ODE’s

DA Integrators
ODE Integrators 

(Runge-Kutta)

Taylor Map

Differential 
Algebra

Magnetic 
and/or Electric 

field information

Helmholtz Theorem
And/OR

Biot-Savart Law

Measured 
field data and/or 

Source data

Differential 
Algebra

In the case of measured data we will be constrained by the quality
(accuracy, divergence, curl free etc) of the data
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Check: Transfer map for analytic quadrupole magnet case



Applications 
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(1) Design of quadrupole magnet with an elliptic cross 
section
For beam wider in the dispersive plane than the transverse plane it is cost efficient to 

utilize magnets with elliptic cross sections
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• 18 superconducting racetrack coils (±108A/m2)
• Rhombic prism support structure (elliptic aperture 1:2)
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• "+" produces a positive multipole term
• Inner wires produce quadrupole and octupole fields
• Outer wires produce hexapole and decapole fields
• 2D case: two Infinitely long current wires
• 3D case: Current Coil

Using DA we can make the currents as parameters and find the functional dependence 
Of the multipole components on the coil currents.
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Operational Plot

Quadrupole and the octupole terms Hexapole and the Decapole terms

•The coefficients are computed at the horizontal half aperture
•The current density was varied between ±108A/m2
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3D Design: Fringe field
The plot of the magnetic field on the midplane, y = 0 m. Only the magnetic field in 

the first quadrant is shown.
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(2) MAGNEX spectrometer dipole magnet

Magnetic field data is measured on the 
grids for 7 different planes
<∆Bi/Bi > = 5x10-4
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Contour plot of magnetic field errors for the mid-plane (region 1)



37

The TOSCA model for the quadrupole magnet ∆B/B = 70 x10-4

Length of 0.8 m with the usable horizontal aperture of ±0.2 m and the vertical aperture of 
0.1 m
The surface was discretized with a step size of 5 mm, leading to a discretization of 
80x40x320 surface elements.

(3) Super-FRS Quadrupole Magnet
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The difference between the relative error of the y component of the magnetic field 
on the mid plane for first quadrant
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The RMS average difference between the TOSCA simulation result and the new 
Laplace solver technique versus the volume element length
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Extracted Transfer map to second order



41

(4) CARABU electric sextapole magnets (work in progress)

The CAlifornium Rare Isotope Breeder Upgrade 
Sextapole magnet are dominated by fringe fields

Good agreement to third order with the Enge model for fringe field 
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Conclusion

Using of DA methods multipole expansion solution of the field to high order can 
be obtained. Which also leads to small number of volume elements
Using the surface data and Helmholtz theorem leads to technique that are 
naturally smoothing
Design of accelerator magnets is possible with the tools developed
The DA frame work developed can be used for other PDEs for which the 
solution can be expressed as an integral equation
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