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       CHAPTER 1 

 

 

FOUNDATIONS AND LINEAGE OF MODERN    

MAGNETORHEOLOGICAL MATERIALS 
 

 

1.1 History and Motivation 

 

In 1947 Willins M. Winslow received a patent for the practical application of the 

“Johnsen Rahbeck Effect”. This was an application of the observation of an attractive 

force between electrodes separated by certain poor insulators. Winslow found through his 

experimentation that some liquids become solids when subjected to an electric field. This 

was known early on as the Winslow effect and is now more commonly referred to as the 

electrorheological effect. [US Patent 1947].  

 

Electrorheological (ER) and Magnetorheological (MR) materials are composed of 

dispersed particles in a fluid carrier or polymer matrix that exhibit fast and reversible 

changes in their rheological characteristics when these fluids are subjected to external 

electric or magnetic fields. This is a consequence of their electrical and/or magnetic 

material properties. The particles in these systems experience forces and torques when 

subjected to electric and/or magnetic fields as a consequence of their material properties. 

Furthermore, when they are electrically charged or magnetized, closely spaced particles 

often exhibit strong mutual interactions. The interactions in materials of this type cause 
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rheological behavior that responds directly to an applied field. Materials that fall into this 

class are referred to as “smart” or active. These ‘smart’ composites which we refer to as 

magnetorheological (MR) elastomers have been explored for use in a number of designs 

from automotive, aerospace and civil engineering applications as shock absorbers, 

automotive suspension bushings, valves, brakes, clutches, safety restraint systems, semi-

active control systems and building vibration isolation.  

 

MR fluid applications have been known for several decades, particularly their use in 

vacuum-compatible bearings and rotational feedthroughs; MR fluids have been 

commercialized under the trademark “Ferrofluidics”. Studies of nanocomposite MR 

fluids have been conducted by Poddar[25], Kristof[18], and Ivanov[14]. These 

investigations have attempted to understand the dynamic magnetic behavior of colloidal 

systems. Wiedmann [37] has written on the observed pseudo-crystalline ordering in 

ferrofluids induced by magnetic fields. However, the extension of MR concepts to solid-

state and polymeric materials is relatively recent. There is much work yet to be done in 

order to understand the basic mechanisms of MR behavior in solid state systems and 

enable engineering applications of such materials.  It is the goal of this dissertation to 

provide some insights on the dynamic behavior of MR elastomeric materials at the 

nanoscale level. This is the first such study of its kind. 

 

The revival of interest in magnetorheological (MR) fluids has inspired the development 

of (MR) elastomers, their solid-state analogues. While MR fluids comprise micron-size, 

or smaller, soft magnetic (magnetizable) inclusions dispersed in liquids, MR elastomers 
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contain such particles embedded in an elastomeric or rubber-like matrix. Elastomers that 

have been used in the formulation of these materials include silicone rubber and natural 

rubber. The application of a magnetic field to an uncured (pre-crosslinked) MR elastomer 

can lead to the formation of particle chains or more complex structures with high levels 

of mechanical anisotropy. Once the matrix has cured or crosslinked, these structures are 

locked into place although it should be pointed out that some limited particle motion can 

still take place as if in a very viscous medium.  This viscoelastic composite can possess 

shear and tensile moduli that can be controlled by the application of an external magnetic 

field. The resulting modulus increase is rapid, continuous, and reversible. For a relatively 

high-modulus elastomer matix such as natural rubber (cis-polyisoprene), the fractional 

modulus increase with field can exceed 50%, while it can be even larger for low-modulus 

host materials. 

 

Investigation of the physical composition and rheological behavior of ER and MR 

devices has traditionally been done with such techniques as tensile and shear strength 

testing, viscosity measurements and dynamic light scattering. A great deal of mechanical 

testing of both ER and MR fluids and solids has been done in the last two decades. The 

emphasis of this body of work has been on understanding the magnetostrictive behavior 

of this class of materials. Experiments have run the range from the composite being an 

active element in a magnetic system [1][7][2][39] to the examination of single chain 

strength using optical trapping [5].  
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Dynamic light scattering has been used to measure the dynamic structure factor of 

density fluctuations in colloidal suspensions. By monitoring changes in the scattered 

intensity-intensity autocorrelation function, the dynamics of the inclusions can be studied. 

It can be shown that the relaxation times of the scattered intensity are determined by the 

mechanical properties of the material such as diffusion constants and dynamic viscosity. 

Several authors have used dynamic light scattering [23][35] in this manner. 

 

X-ray photon correlation spectroscopy (XPCS) was recently employed to measure the  

diffusive behavior of gold colloids and binary fluids[22]. When coherent x-ray fronts are 

scattered at the particle-host interface they produce a speckle pattern. The time 

dependence of this intensity pattern can be correlated to explore the characteristic times 

of the mechanical relaxation of the associated scattering targets. We have extended this 

technique to MR elastomer composite samples using x-ray synchrotron facilities at the 

Advanced Photon Source, Argonne National Laboratory.  

 

APS is a third generation x-ray synchrotron source which accelerates relativistic electrons 

through  arrays of permanent magnets known as undulators, thus producing extremely 

intense  quasi-monochromatic x-ray radiation. Excellent transverse and longitudinal 

coherence of the beam enables interfering wave fronts at the scattering interface to 

produce an x-ray speckle interference pattern. By studying the temporal fluctuations in 

the intensities of an x-ray speckle pattern of an (MR) elastomer, we can examine its 

internal dynamics. X-Ray speckle interferometry correlates the change in the produced 

speckle field to the relative internal motion of the scattering centers (particles). An (MR) 
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elastomer sample was placed with the longitudinal cure axis on beam center. X-rays were 

then scattered from the MR elastomer while an external magnetic field was applied with a 

Heavyside (step) function. The scattered field was then time correlated over a range of 

scattering angles. The rate of decay in scattered intensity, )()2( tg ,at a given scattering 

vector , is given by 
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and is due to the change in the internal order due to mechanical relaxation processes. 

 

These mechanical processes are extracted from the scattered electric field vector, )()1( tg , 

via dynamic light scattering principles and are related to the scattered field intensity by 

the Siegert relation 
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where A is an experimental optical constant referred to as the speckle constant. 

 

Characteristic material relaxation times and the corresponding relative length changes 

(particle mean square displacements) can be extracted from the speckle data. The stresses 

and mechanical constants can then be estimated using the change in stress for a polymer 

network and the modified viscoelastic elements employed in fractional calculus. We can 

then use basic continuum mechanics to model the displacements of a rigid spherical 
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indenter into an elastic half-space. This will allow us to classify the magnetic forces at 

various length scales associated with the response to a cyclically applied magnetic field 

for varying degrees of inclusion anisotropy. Understanding these interaction forces are 

the basis for better design of a magnetorheological material.  

 

1.2 Dissertation Organization 

 

In the chapters that follow I hope to present both an outline for the understanding of the  

basic mechanics behind a MRE and a novel method to investigate this material using 

XPCS. The topics to be presented are as follows: 

 

• Fundamental concepts and models specifically needed in MRE mechanics 

  

• Theoretical background of small angle scattering, XPCS, speckle and basic 

concepts of dynamic light scattering 

 

• Basic continuum and polymer mechanics 

 

• Theory of viscoelasticity and fractional calculus variants 

 

• My XPCS MRE experiments at Argonne National Lab 

 

• Methods, results and conclusions 
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CHAPTER 2 

 

THEORETICAL BASIS FOR THE WORK 

 

2.1 THEORY OF MRE MECHANICS 

 

2.1.1 MRE Design 

(MR) elastomeric materials consist of micron size magnetically permeable particles 

suspended in a polymeric elastomer. The dispersed phase is usually a soft magnetic 

material such as iron particles of 0.1-10 µm size and 30 to 50 percent volume fraction. 

Upon application of a magnetic field, the rheological properties of these materials are 

rapidly and reversibly altered. The mechanism responsible for this bulk effect is the 

induced magnetic interaction force between the particles within the matrix. A vulcanized 

polymer matrix is necessary and the relative MR effect can be increased by using a softer 

matrix material such as silicone rubber. One of the most important properties of the 

matrix material besides the rheological properties is that the magnetic permeability 

should be as low as possible. If the matrix is magnetic, the polarization of the particles 

will be less effective and the MR effect reduced.  The final rigidity of the structure is thus 

a function of the particle volume fraction and distribution, the matrix material and the 

applied magnetic field.  
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Most models of (MR) material behavior are based on the magnetic dipole interactions 

between adjacent particles. These interparticle interactions are then averaged over the 

entire sample to yield a model of the bulk magnetostrictive behavior. Magnetizable 

materials exhibit strongly nonlinear behaviors such as paramagnetism and 

ferromagnetism. Though magnetization characterization is very complex, it is adequate, 

for the purposes of describing the forces on magnetizable particles, to group nonlinear 

magnetic materials into two classifications, namely, “soft” and “hard” materials. 

Representative magnetization curves of M versus H are shown in Fig. 1 for these two 

types of materials.  

 

 

 Fig. 1 Representative magnetization curves for ferromagnetic materials 

(a) Magnetically soft material showing saturation.  

(b) Magnetically hard material showing hysteresis loop. 
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The principal manifestation of this nonlinearity in soft materials is the phenomenon of 

saturation. Saturation, an attribute of orientational polarization, occurs when all the 

magnetic domains in a material become aligned, limiting the magnitude of the 

magnetization vector to a finite value satM . The influence of saturation upon the effective 

moment of a particle should be evident. Magnetically hard materials exhibit saturation, 

but just as importantly, they require significant energy to realign their domain walls once 

the material is first magnetized. This phenomenon is called hysteresis. The shape of a 

hysteresis curve is dependent upon the hardness of the material, plus the magnitude and 

rate of change of the applied magnetic field. Thus, when a uniform magnetic field is 

superimposed upon the magnetic spherical inclusion and its magnitude is increased from 

zero to some final value, the material magnetization will follow this curve. 

 

The inclusions interact via a dipolar interaction energy given by 
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and the associated force in the MRE is given by 
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Whereθ  is the angle that the vector joining the particle centers forms with the field 

direction, and r is the distance between particle centers. M is the particle magnetization 

and V is the particle volume. Therefore it is noted that employing an inclusion material 

with high permeability and saturation magnetization will provide high interaction energy 

and subsequently a high MR effect. 

 

 

We will examine the simple dipole model of particle interaction to aid in characterizing 

the force distribution within the particle network. This is the basis for the composite 

magnetostriction. 

 

2.1.2 Dipole-Dipole Interaction 

 

The approach will be to compute the interaction energy, )( xxE ∆+ , of a chain of particles 

with a virtual break x∆ at a joint j then calculate the shear force at the jth joint in a chain 

from 
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Harpavat [11] has published an analysis for calculating the magnetic forces at various 

joints of a chain of spherical beads in a magnetic field. The following fundamental 

concepts for the magnetic properties of bulk matter can be found in numerous texts 

[6][10][14]. 
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The net magnetic field at any point in space is the vector sum of the contributions from 

the original source field plus a contribution from the magnetization of any material in this 

field.  

    MBB oo µ+=     (2.4) 

 

Where M is the magnetization or the magnetic moment per unit volume and Moµ the 

contribution of the magnetized object to the field. The effects of free currents are isolated 

by defining the magnetic intensity, H, as   

 

M
B

H
o

−≡
µ

      (2.5) 

 

The dimensions of H are those of M, not of B. By replacing B with MB oµ+0 we find  

 

HB oo µ=       (2.6) 

 

We can now write 

    MHB oo µµ +=      (2.7) 

 

and now define the magnetic susceptibility, mχ , as a coefficient of proportionality 

between the magnetization and the magnetic intensity 

 

    HM mχ≡       (2.8) 
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With this definition we can express the relation between the magnetic field in a material 

and the magnetic intensity 

 

    HHMBB mo χµµµ 000 +=+=   (2.9) 

 

     ( )Hmχµ += 10    (2.10) 

 

We define the coefficient of H as the permeability, µ, of the material  

     

    ( )mχµµ +≡ 10     (2.11)  

  

 

and the relative permeability as  

 

( )mR χ
µ

µ
µ +== 1

0

    (2.12) 

 

We will follow the derivation of the dipole-dipole interaction as outlined by Rosenweig 

[29]. The magnetic field, H, from a point dipole p a distance r away from that source is 
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In (SI) an induction field B in tesla is defined in vacuum as  

 

    HB 0µ=      (2.15) 

 

therefore the induction field B surrounding an (SI) pole is 
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The intensity of the magnetization is defined as  
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The external field of a dipole point source is   
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Where rdr += 11
2

1
 and rdr += 22

2

1
. Though this relation holds for any separation d, 

what is desired is a good approximation to the field when the separation d is small 

compared to r. When rd << , to a good approximation 1r  and 2r  are given by 
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By the binomial theorem, 
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Canceling common terms gives  
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Where d̂ is the unit vector dd
r

. However, θcosˆˆ =⋅ rd , ,Mos µρ =  and ,daV d= so the 

result may be written as 
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The intrinsic particle polarization is the dipole moment magnitude per unit particle 

volume, i.e., 

     

iMVm =      (2.27) 

 

Where M is the induced particle polarization in (SI) units of Tesla.  

Note that M0µ represents the vector moment per unit volume because the definition of 

dipole moment m is 

 

    MVdMadam dds 00 µµρ ==≡    (2.28) 

 

The interaction energy of two dipoles is found from the force per unit volume acting on 

an elementary volume of dipolar matter in an external magnetic field H . The total force 

using ( )HM ∇⋅0µ and the definition of m is 

 

     ( )HmF ∇⋅=      (2.29) 



 16 

 

With the help of a vector identity, ( ) 0Hm ∇⋅ can be rewritten as 

 

( ) ( ) ( ) ( ) ( )mHHmmHHmHm ×∇×−×∇×−∇⋅−⋅∇=∇⋅   (2.30) 

 

For constant m this simplifies to 

 

    ( ) ( ) ( )HmHmHm ×∇×−⋅∇=∇⋅    (2.31) 

 

When there is no flow of electric current, H×∇ is identically zero and thus for a dipole 

of fixed moment m the force F can be derived from the energy of interaction hE by 

     

    hEF −∇=      (2.32) 

Where  

 

    ( )HmEh ⋅−=      (2.33) 

 

It is now possible to consider the interaction energy of two point dipoles. If for example 

dipole (1) is regarded as the source of the magnetic field felt by (2) then 
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Now using this and the relation  
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    22202202 d̂VMVMm µµ ==     (2.35) 

 

The interaction energy of the two dipoles 1m  and 2m  of equal magnitude is  

 

    ( )1212 HmE ⋅−=      (2.36) 
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Using the basic trigonometric identities  
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This can be rewritten as  
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and Rµ  is the reduced material permeability. 

 

 

 

2.1.3 MRE Chain Mechanics Model 

 

Jolly [15] has modeled the shear stress of the chains caused by the interparticle force. 

This method is referenced by Zhou [39] in his MR elastomer studies. By defining the 

shear strain of the particle chain as orx=ε ( and qLr oo π2=≅ )  

 

 
Fig. 2 Shear model for the magnetic interaction between two dipoles 

 



 19 

Jolly has written the interaction energy as 
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Assuming the composite solid consisting of many spherical particles embedded within a 

matrix, the total number of particles n, each having volume Vi, can be expressed as  
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where φ  is the volume fraction of the particles in the composite, d is the particle 

diameter, and cV  is the total volume of the composite. Assuming that the magnetic 

interaction happens foremost between adjacent particles in a chain, the total energy 

density (energy per unit volume) can be calculated as 
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The stress induced by the application of a magnetic field can be computed by taking the 

derivative of the inter-particle energy density with respect to strain: 
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Therefore 
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Defining dLh 0= where d is the particle diameter and Lo the interparticle separation,  

 

we can now write the expression for the stress as 
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A small strain approximation of this stress can be given by 
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For which a 3.6% error results when the strain equals 0.1. The modulus G of the particle 

network is simply the stress divided by the strain  
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The yield stress of a particle chain occurs at the strain for which the stress is a maximum. 

This can be found by taking the first derivative of the stress in the chain to zero   
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From which yield strain and corresponding yield stress can be found 
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A small strain approximation of the stress has been given as 
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We can gain a first approximation to the local deformation mechanics by modeling the 

dynamics at the inclusion-matrix interface as a rigid sphere into an elastic half-space. 

This is the classic Hertz elastic problem. 
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2.1.4 Hertz Indenter 

 

The stresses and deflections arising from the contact of two elastic solids is referred to as 

the Hertz contact problem. The most well known scenario is that of contact between a 

rigid sphere and a flat surface. Landau and Lifshitz[19] have set forth a set of 

fundamental equations for solid bodies in contact. This is the basic principle of atomic 

force microscopy (AFM). In AFM a force is applied to a system such to bring a spherical 

microparticle in contact with an elastic substrate. When the particle is in contact with the 

elastic substrate, the relative displacement between the microparticle and the elastic 

substrate due to elastic deformation is measured. This principle is outlined by many 

works, including the Yang [38] study of the load-displacement relation. Recently, 

Rudnitsky[30] applied this tool by using dynamic indentation to determine the time-

dependent viscoelastic properties of a polymeric material. Therefore, using this as 

motivation, we will now outline the Hertz problem and later use this force-displacement 

argument to classify the MRE length scale dependent forces.  
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Fig. 3 Simple representation of a rigid spherical indenter with an 

 illustration of the local shear deformation.  

 

 

Hertz found that the radius of the circle of contact a , is related to the indenter load, P, the 

indenter radius R, and the elastic properties of the materials by  
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where k is an elastic mismatch factor given by: 
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where E and ν are the Young’s Modulus and Poisson’s ratio of the specimen (unprimed) 

and indenter (primed). Hertz also found that the maximum tensile stress in the specimen 

occurs at the edge of the contact circle at the surface and is given by (see Fig.4). 

 

Fig. 4: Representation of the Hertz problem illustrating the difference between the 

indenter radius R and the contact radius a.  
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This stress, acting in a radial direction on the surface outside the indenter, decreases as 

the inverse of the square of the distance away from the center of contact. The maximum 

tensile stress outside the indenter can be expressed in terms of the indenter radius R 
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The mean contact pressure, mp , is given by the indenter load divided by the contact area, 

and it is a useful normalizing parameter which has the additional virtue if having actual 

physical significance. 
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it can be shown that the contact area is proportional to 3/2P and therefore mp is 

proportional to 3/1P . This yields 
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The mean contact pressure may be referred to as the “indentation stress” and the quantity 

Ra /  the “indentation strain”.  

 

If the contacting bodies are in frictionless contact, i.e. only normal pressure is transmitted 

between the indenter and the specimen, the pressure distribution is given by 
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Consider now the contact of a sphere of radius 'R with elastic modulus E
’
 and Poisson’s 

ratio 'ν in contact with a flat surface of a specimen. With no load applied, and with the 

indenter on the point making contact with the specimen, the distance from a point on the 

periphery of the indenter and the specimen surface is given by 

 

R

r

2

2

=l        (2.66) 

 

where R is the relative curvature of the indenter and the specimen given by 
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If the load is applied to a flat surface ( )∞=sR such that the point at which the load is 

applied moves a vertical distanceδ. This distance is called the “load-point displacement”, 

it is measured with respect to a distant point in the specimen and may be considered the 

distance of mutual approach between the indenter and the surface.  

 

In general, both the indenter and the specimen undergo deformation. These deformations 

are shown by '

zu  and zu at some arbitrary point inside the contact circle for both the 

indenter and the specimen. The load-point displacement is given by l++= zz uu 'δ .  
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If the indenter is perfectly rigid then 0' =zu  and for both rigid and non-rigid indenters, 

0=l  at 0=r and thus the load-point displacement is given by zz uu += 'δ . Hertz showed 

that a distribution of pressure of the form given for that of a sphere results in 

displacements of the specimen surface, for ar ≤  
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And outside the contact circle ar >  
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After deformation, the contact surface lies in between the two original surfaces and is 

also part of a sphere whose radius depends on the relative radii of curvature of the two 

opposing surfaces and the elastic properties of the two contacting materials. For the 

special case of contact between a spherical indenter and a flat surface where the two 

materials have the same elastic properties, the radius of curvature of the contact surface is 

twice that of the radius of curvature of the indenter. The Hertz pressure distribution acts 

equally on both the surface of the specimen and the indenter, and the deflections of points 

on the surface of each are given by both   
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The Hertz analysis approximates the curved surface of a sphere as a flat surface since the 

radius of curvature is assumed to be large in comparison to the area of contact. Thus for 

the general case of a non-rigid indenter and specimen yields  
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where Rx is the relative radius of curvature. By setting ar = we can arrive at the Hertz 

equation and show that at 0=r the distance of mutual approach δ between two distant 

points within the indenter and the specimen are given by 
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When the indenter is perfectly rigid 
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Therefore we can write the distance of mutual approach as 
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or in terms of the shear modulus  
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Therefore the force responsible for this displacement is written as  
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2.2 THEORETICAL BACKGROUND OF SMALL ANGLE SCATTERING, XPCS 

AND SPECKLE 

 

2.2.1 Small Angle Scattering 

Scattering techniques are used to investigate the structure, the organization and the 

dynamics of matter (e.g. polymers, colloids, micellar systems, aggregates, etc.), with 
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radiation such as neutrons, electrons, x-rays or light.  In general, the specific properties of 

these sources and their interactions with matter allow for exploring a typical spatial scale 

from 1 to 20,000 nanometers and a typical dynamic range of seconds to picoseconds. A 

well collimated beam of radiation with wavelength λ and energy E is incident on a 

sample of thickness d. Most of the incident radiation is transmitted through the sample 

without any interaction and some small portion may be absorbed. Only a certain fraction 

of the incident beam is interacting with the sample and scattered at an angle θ > 0. In 

general, there is also a non-zero momentum transfer between the sample and the incident 

beam. A scattering experiment is thus performed, by using some type of convenient 

detection device, measuring the scattered intensity I as a function of scattering angle θ  at 

a distance L away from the sample and elevated above the incident beam axis by a 

scattering vector q (see Fig.5).   

 

 
Fig. 5: A representation of the addition of two scattered waves coinciding at a given  

      scattering vector q. 
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Fig. 6: Definition of the scattering vector q 
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Where ks and ki are the incident and scattered wave. Substituting this into Bragg’s Law of 

Diffraction  

     )2/sin(2 θλ d=    (2.79) 

yields an expression for a characteristic separation distance between scattering sites 

     
L

q
π2

=     (2.80) 
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The intensity at each spot of the diffraction pattern is the result of interference of the light 

from many different points in the disordered materials. The essentially random path 

lengths of the light from these points to the given spot in the measured diffraction pattern 

leads to the light being the sum of rays with a random set of phases. However, since the 

light is coherent, the phase of the light, even though it is randomly distributed from point 

to point, has a definite value at each point. Where the phases add destructively results in a 

dark spot and where they add constructively, a bright spot appears. 

 

2.2.2 XPCS 

 

If two particles were to fluctuate in position, their interference pattern would also 

fluctuate. Intensity fluctuation spectroscopy is the technique of measuring these intensity 

fluctuations and relating them to the kinetics of the materials undergoing diffraction. This 

technique has been extended to x-rays [16]. X-rays have several advantages over light in 

that most media are transparent to x-rays, the problems of multiple scattering are not as 

pronounced or non-existent, and the shorter wavelengths probe smaller distances.   

  

Recent experiments have demonstrated the potential of x-ray intensity-fluctuation 

spectroscopy (XIFS), which is also know as x-ray photon-correlation spectroscopy 

(XPCS), to become a powerful probe of sample dynamics at low frequencies (< 410 Hz) 

and small-length-scales ( mµ1≤ ). For example, (XIFS) measurements have been made of 

the equilibrium dynamics of a binary alloy near critical point [36], of the Brownian 

motion of gold, palladium, and antimony oxide colloids diffusing in glycerol, and of the 
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equilibrium dynamics of block-copolymer micelles in a homopolymer matrix[22]. All of 

these measurements were performed in a regime of wave-vector and frequency space 

which is inaccessible to various other light, neutron, or x-ray scattering techniques.  

  

2.2.3 Speckle 

 

When coherent light is scattered from a disordered system it gives rise to a random 

diffraction or “speckle” pattern. Speckle patterns are well known from laser light 

scattering and are related to the exact special arrangement of the disorder. A speckle 

pattern can be interpreted as an instantaneous, diffraction limited structure factor 
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where )(rρ is the electron density and the integral is taken over the coherently illuminated 

volume ltC ξξ ⋅= 2 of the sample. When the illuminated volume becomes comparable to 

the coherence lengths of the source the structure factor ),( tqS
r

 becomes sensitive to the 

individual realizations of the ensemble and thus sensitive to the exact atomic arrangement 

in the illuminated volume. If this spatial arrangement changes with time the 

corresponding speckle pattern also changes. The observation of intensity fluctuations of a 

single or equivalent speckle(s) is then a direct measure of the underlying dynamics. By 

using coherent x-rays, a Photon Correlation Spectroscopy (XPCS) measurement can 
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probe low frequency dynamics ( 610 Hz to 310− Hz) in opaque materials with atomic 

resolution ( 310− A<g<1A).  

 

We can define the longitudinal coherence length as 

 

    ( ) ( )νλλξ ∆=∆= 222
cl     (2.82)  

 

Note that this naturally leads to a definition for coherence time) 

     

( )νξτ ∆== 21clc .     (2.83) 

 

There are also two transverse coherence lengths which determine approximately how far 

one must travel parallel to the wave fronts before the wave gets out of phase.  

This corresponds to a time interval within which the phase of the wave in the propagation 

direction (longitudinal) remains within a range of 2π± . Most often, the primary source 

of this divergence is determined by the finite size of the source cσ  a distance R away. 

This gives an equation for the transverse coherence length 

 

    ( )st R σλξ 2=    (2.84)    

 

A beam which is sufficiently monochromatic and has a transverse size comparable to its 

transverse coherence lengths is said to be coherent. When the dimensions of the beam are 

much larger than the coherence lengths the beam is said to be incoherent. Coherent 
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effects of the interaction of light with matter happen inside the light’s coherence volume. 

Each coherent region will lead to a speckle pattern, and an image or diffraction pattern is 

then made up of the average over the sum of all these speckle patterns. 

 

To be more quantitative we need to describe the electric field correlations. The mutual 

coherence function is described as: 
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Where ( )trE
rr

,  is the electric field. Here the averages can be considered either over the 

different coherence regions or over the distribution of random amplitudes and phases of 

the electromagnetic (EM) wave. Just as in statistical mechanics, by dealing with the 

correlation functions directly, the averaging necessary to handle the intrinsic randomness 

of the wave no longer needs to be explicitly taken care of. Usually the incident EM wave 

can be considered as having constant intensity and it makes sense to consider the 

randomness as stationary as this means that the correlation function depends only on the 

time difference 12 tt −=τ . A normalized form of the correlation function, called the 

degree of coherence, is also useful and it is defined as: 
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Regions with 1=γ  can be considered perfectly coherent and those with 0=γ  are 

incoherent. As is seen from the definition ( )2121 ,,, ttrr
rr

Γ  is just the intensity of the light at 

point ( )tr ,
r

. 

 

One can write a similar set of definitions as functions of frequency instead of time. 

Convention has developed to give the frequency dependent terms different names. Thus 

the cross-spectral density is the Fourier transform of the mutual coherence function 

(assumed stationary) 
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and the frequency spectrum of the light ( )ν,rH
r

 is seen to be ),,( 21 τrrW
rr

. The 

corresponding spectral degree of coherence is: 
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Finally, one can see the relationship of ),,( 21 νrrW
rr

to correlations in the frequency 

dependent electric fields: 

 

   ).(),(),(),( 21212211

* ννδννν −= rrWrErE
rrrr

  (2.89)  

  

Often it is a good approximation to assume that the spatially dependent and frequency 

(and hence time) dependent parts factor. This is labeled as cross-spectral purity and 
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implies that the frequency spectrum of the wave is independent of the position in the 

beam. 

 

In optics, problems in diffraction and interference are often treated by the Huygens 

principle. This states that wave propagation problems can be treated by imaging the 

wavefronts as composed of point sources, each of which generates spherical waves. 

Propagating these spherical waves in a Huygens construction can explain most diffraction 

effects.  

 

A convenient starting point for the calculations involving coherence is the Huygens-

Fresnel principle. The integral form for the solution for to the wave equation states that 

each point in the wavefront can be considered as a point source of spherical waves which, 

when added coherently, give the resulting propagation of the wave. Using this principle 

and the above definitions, one can see how the mutual coherence function or the cross-

spectral density can be propagated from one surface S of the wavefront to another. An 

example of such an equation has been given as [42]: 
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where iR are the distances between points ir
r

and 
'

ir
r

 and the )(kiΛ are the inclination 

factors which arise in the Huygens-Fresnel principle. For highly directional beams they 

are simply π2ik . 
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To help make the above definitions and expressions more concrete it is worthwhile to 

calculate the cross-spectral density for two arbitrary points distant from an incoherent 

source. One can argue that the cross-spectral density at an incoherent source with 

intensity distribution )( 1rI
r

 and frequency spectrum )(νH should have the form: 
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The constant oκ has dimensions of a length squared in order to compensate for the 

implied dimensions of the two dimensional delta function defined on the surface S and is 

equal to πλ2 . 

This function has the properties that any two distinct points in the source are uncorrelated 

and give the correct relation between the intensity and the cross-spectral density when 
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where the last line is obtained by defining the unit vectors iii rrs
r

=ˆ and using the far 

field limit so 'ˆ rsrR iii

r
⋅−≈ . 
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For synchrotron radiation, the intensity distribution is often described as the product of a 

Gaussian distribution in the vertical position y and one in the horizontal position x, 
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With this definition )(νHI o is just the integrated number of photons per second at 

frequency ν in the source. One can then perform all the integrals to arrive at the cross-

spectral density for a plane at a distance z from the source (using ( )zyxr iii ,,=
r

) 

  

( ) ( )

2

22

2211

2

2
12

2

2
12

)(
),,,,(

z

eeHI
yxyxW

vh

yyxx

i

o













 −
+

−
−

=
ξξψ

π

ν
ν   (2.95)  

 

where the transverse coherence lengths are defined as  
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),,,,( 2211 νyxyxW is the primary result of this section and will be used to calculate partial 

coherence effects on diffraction. It shows explicitly that the transverse coherence 

dimensions are functions of the source dimensions, the distance and wavelength. It is 

informative to write this as  
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which relates the angular size of the source ziσ to the coherence length iξ  and is similar 

to the angle-position uncertainty relation. Angle and position are the appropriate phase 

space variables for propagating waves and the phase space density of a coherent wave is 

πλ 2 .  

 

Typically, the frequency spectrum is quasi-monochromatic so that the frequency 

spectrum is peaked near a central frequency, πϖν 2oo = , with a width, δν . This 

frequency spread determines the longitudinal coherence length which will be proportional 

to δν/c  where c is the speed of light. We will use the Lorentzian frequency distribution  
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This leads to an exponential time correlation 
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Where the correlation time is defined as πδντ 21=cor  and the full width at half 

maximum (FWHM) of the power spectrum is 2δν. It follows for a Lorentzian spectrum 

that the longitudinal coherence length can be defined as ,)2( 1−∆== λλτξ kc corl i.e., 

))(/( EEl ∆= πλξ , where ∆E is the FWHM of the energy spectrum.   
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Phase space arguments relate the angular spread of the beam to the coherence length, but 

the above calculation only uses the angular size of the source and not the angular 

collimation of synchrotron sources.  

 

One would expect that high collimation would be the result of increased coherence and 

this is indeed found to be so. A phase space description of synchrotron radiation is based 

on giving intensity as a function of direction and position over cross-sections of the 

beam. This double distribution is called the spectral brightness. Usually a cross-section of 

the beam intersecting a plane at a distance z is used but any surface through which the 

beam passes would work. For a certain class of sources there is a simple direct relation 

between the brightness and the cross-spectral density. Just as the time dependence of the 

coherence is often only a function of the time difference (stationarity) the degree of 

coherence is often a function of the separation of the two spatial arguments 

(homogeneity).   

 

Such sources are often called Schell-model sources [19]. Furthermore, it often happens 

that coherence is more sharply peaked than the intensity distribution of the light. This 

implies the following form of the cross-spectral density: 
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Sources with this factored form are called quasi-homogeneous and for these sources, the 

brightness is related to the Fourier transform of the coherence as 
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Where s
)

 is a unit vector specifying the direction and ⊥s
)

 the part of s
)

 in the plane upon 

which the brightness is defined. From this equation one can see that the information 

content of the cross-spectral density is as complete as the phase space description.  

Assuming Gaussian forms for the partial coherence a natural cross-spectral density of a 

synchrotron source is: 
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with coherence lengths iρ and source sizes iσ . Thus, after integration 
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which has the usual Gaussian form often given for synchrotron radiation. The angular 

spreads 
i

sσ of the synchrotron source are seen to be related to the intrinsic coherence 

lengths, iρ , by ( )
is k

i
ρσ 1= . Note that in the paraxial limit x and y << z and 

( ) ( )1,,1,,ˆ zyzxsss yx == . 

The cross-spectral density at a distance z as implied above 

 

( ) ( ) ( )

( ) ( ) ( )







 −
−











∆

−
−











∆

+
−








 −
−











∆

−
−











∆

+
−

∆∆
=

vvvvv

hhhhhvh

o

R

yyikyyyy

R

xxikxxxxHI
zyxyxW

2

1

2

2

2

2

12

2

2

21

2

1

2

2

2

2

12

2

2

21
2211

exp
)(2

exp
)(8

exp

exp
)(2

exp
)(8

exp
2

)(
),,,,,(

δσ

δσπ

ν
ν

 

                     (2.105)   

 

where we have defined (subscript i represents either v or h):   
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This form shows how both the beam size and the coherence lengths grow with distance 

from the source. The phase factors in the above form (the complex exponentials) are 

related to the curvature of the spherical wavefronts intersected by a plane. By inspection 

of these equations, it is seen that the transverse coherence lengths of the synchrotron 

begin at iδ and at large distances grows linearly with distance. Typically the coherence 

lengths are much smaller than the source dimensions and so iδ = iρ . From this form for 

),,,,,( 2211 νzyxyxW  we find ),,,,,( 122211 ttzyxyx −Γ . 

 

2.3 DYNAMIC LIGHT SCATTERING 

 

2.3.1 The Intensity and Electric Field Autocorrelation Functions g 
(2)

 and g 
(1) 

 

To investigate the properties of the scattered light field from a field of identical spherical 

scatterers, we write the general expression for the instantaneous amplitude of the field 

E(q,t) scattered by N particles to a point in the far field 
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Here q is the scattering vector, ),( tqb j is the time-dependent amplitude of the field 

scattered by particle j, and Rj(t) is the position of the center of mass of particle j at time t. 

For identical spherical particles all { }),( tqb j have the same time-independent value b(q) 
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and can therefore be taken out of the sum. Dynamic light scattering deals with 

normalized quantities, thus we can omit the pre-factors 
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and can write 
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Each of the phase factors [ ])(exp tRiq j•−  can be represented by unit vectors in the 

complex plane making an angle jRq •  with the real axis.  

 

The average value of the scattered field is 
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          (2.113) 

since the phase angles are uniformly distributed between 0 and 2π . The average of the 

scattered intensity is  
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   N=        (2.116) 

 

The observed time correlation function is a light intensity autocorrelation function as 

follows:   

     

)()0()()2(
tIItG =     (2.117) 

 

An electric field autocorrelation function is 

 

    )0()()()1( EtEtG ∗=     (2.118) 

 

where )(tE ∗ is the complex conjugate of electric field E(t). By introducing normalized 

autocorrelation functions of  
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and  
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)(
I

tG
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Where we can now write the following relationship between the first order (electric field) 

autocorrelation function )()1( tg  (a Fourier transform of the spectrum)  
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[ ]{ }∑ −•−= −

j

jj RRqNtg )()0(exp)( 1)1( τ   (2.121) 

[ ]{ })()0(exp τRRiq −•−=    (2.122) 

 

The last step follows from the fact that the average motions of identical particles are 

themselves the same.  

 

As previously mentioned, dynamic light scattering measures directly the time correlation 

function of the scattered intensity  
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this can be factored… 
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By defining the normalized time correlation function of the scattered intensity by 
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where     

),()0,()()2( τqIqItG =     (2.128) 
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therefore  
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and the second order (intensity) autocorrelation function )()2( tg  can now be given by the 

Siegert relation: 
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     [ ]2)1()2( )(1 tgAg +=    (2.133) 

 

In an ideal apparatus, the constant A, often called the ‘speckle contrast’, determined 

largely by the size of the detection aperture in the experiment optics, is equal to 1, so that, 

in such a case , the normalized intensity autocorrelation function starts at a value of 2 at 

time equals zero and eventually decays to 1. This is shown as follows: 

 

In a dynamic light scattering experiment a detector reads the intensity of light scattered 

from a given sample volume.  The qualitative features of light scattering by ergodic and 

non-ergodic media can be described in simple terms. The amplitude of the scattered light 

field ),( tqE at a time t scattered to a point in the far field associated with a scattering 

vector q. If it is assumed that the scattering volume contains many uncorrelated regions  

then ),( tqE , sampled over the full ensemble, is a zero-mean complex Gaussian variable.  

The intensity of the scattered light is  

 

    
2

),(),( tqEtqI ≡      (2.134) 

 

This intensity is considered to be an ensemble average of scattered intensities I at a given 

scattering vector q from sub-ensembles{ }pm  First let us assume that the medium is 

completely rigid so that no motion of the scatterers is possible. Then the intensity 

),( tqI p of the light scattered by a particular volume V in configuration p, viewed as a 

function of the scattering vector q, constitutes a non-fluctuating random Gaussian speckle 



 50 

pattern. If the intensity at a particular point in the pattern is constant in time (no scatterer 

motion) then 

 

    )(),( qItqI pp = .    (2.135) 

 

Then, if one were to measure by dynamic light scattering the normalized intensity 

correlation function, one would obtain: 
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graphically represented in Figure 7: 

 

 

 
Fig. 7: The normalized time-averaged intensity correlation function for a localized sub 

ensemble 
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If the sample is moved so that a different volume is illuminated the detector will measure 

a different intensity ),(' tqI
p

. Clearly the normalized correlation function of this intensity 

will also have the value of 1. On the other hand, if one were to combine the time 

averaged intensities and the un-normalized ICF’s, measured in series, p=1 to P, of 

differing scattering volumes, one would obtain for the normalized ensemble-averaged 

intensity correlation function 
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Fig.8: The normalized ensemble-averaged intensity correlation function 

 

Now consider the case of an ergodic medium. As the scatterers move the intensity at a 

point in the speckle pattern will fluctuate in time. Furthermore, in time a representative 

fraction of all possible configurations will be sampled so therefore the speckle pattern 
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will undergo the full range of Gaussian fluctuations. Here, the value of 2 results from the 

zero-mean Gaussian statistical properties of ( )tqE , . When the decay time 0=t , the 

normalized ICF has the Gaussian value of 2 
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And as ∞→t , ),( tqI and )0,(qI become uncorrelated such that  
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Fig.9: The ensemble averaged intensity correlation function as a function  

of time.  

 

The decay of the ICF between these limits is determined by the nature of the motion of 

the scatterers. 
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Now consider the case of a non-ergodic medium where the motion is limited about a set 

of fixed positions. As the scatterers move, the intensity ),( tqI at a point in the speckle 

pattern will fluctuate in time. Now the light scattered by a particular scattering volume 

will constitute a speckle pattern that is composed of both fluctuating and non-fluctuating 

components. 

 

    
TDTST

III +=       (2.140) 

 

Whereas 
TSI  is related to the frozen-in static component and varies with position,  

TDI is related to the mobile dynamic component so that so that it is independent of the 

sample position. Because we are looking at the relaxation dynamics, we can model the 

MRE as an ergodic system concentrating on 
TDI and setting 0=

TSI . ),()2( tqg  is 

related to the normalized electric-field autocorrelation function ),()1( tqg E    
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via the Siegert relation  
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A is a positive optical experimental constant less than 1 and is referred to as the speckle 

contrast. 

 

 

By using the earlier definitions for the upper and lower limits on the intensity correlation 

function, we can define the data in our experiment by 
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t

A

tqg E 1),()2( −

 

Fig.10: A representation of the electric field correlation function, [ ]2)1( )(tg E , versus time 

via the Siegert relation. 
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The electric field correlation function ),()1( tqg  is frequently called the ‘measured 

intermediate scattering function’ ),( tqf M i.e. 
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),(),( )1( tqgtqf M ≡               (2.143) 

 

For identical interacting spheres { }[ ])(),( qbtqball j =  this becomes 
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where ( )tqF ,  is defined as the “dynamic structure factor” and is defined as  
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and )0,()( qFqS = is defined as the static structure factor 
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in the absence of interactions, the cross-terms kj ≠ vanish to give  

 

    1)( ≅qS       (2.147) 

 

The expression for the dynamic structure factor  
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[ ])()0(exp),( tRRiqtqF kj −•−=     (2.148) 

 

can be re-written for one dimension as 

 

   )(exp),( txiqtqF
r

∆•−=      (2.149) 

 

where x
r

∆ is a single Cartesian component of the particle displacement. If x
r

∆ is assumed 

to be a Gaussian random variable then dynamic light scattering gives a direct 

measurement of the particle mean square displacement as 

 

( ))(exp),( 22 txqtqF
r

∆−=     (2.150) 

 

and the Siegert relation is shown to decay exponentially.  

 

 

The mean square displacement ( )tx 2∆  of the ferrous filler in the MRE under influence 

of an external magnetic field can be examined using the analogy of the simple physical 

picture of the scattering from colloidal gels. Using the fundamental relation of 

02 Lq π= we can write the dynamic structure factor as a function of the average relative 

length changes  
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For monodisperse particles in a dilute solution, we may view the motion of the particles 

with a given relaxation coefficient (denoted by i) as contributing its own exponential to 

the first order correlation function such that  

 

    ∑ Γ−=
i

ii tAtg )exp()()1(     (2.153) 

  

Where iΓ is the reciprocal decay time and iA  is a weighting factor proportional to the 

fraction of the scattered intensity contributed by this subset of particles. It has been 

experimentally shown by several authors [29] [18] [8] that for these types of systems 

 

     2Dq=Γ  .     (2.154) 

 

D is the diffusion coefficient of the particles and q is the magnitude of the scattering 

wave vector. Hansen has mathematically derived the diffusion coefficient for single 

particle motion using the velocity autocorrelation function. For identical scatterers 
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(colloids or polymers) D has been identified as a q-dependent collective diffusion 

coefficient which, in the limit 0→q , is equal to the gradient diffusion coefficient.  

 

2.3.2 Method of Cumulants  

 

We have previously shown the first order time correlation function is now a sum of 

exponentials. The correlation function of the light scattered by this type of colloidal 

system lends itself to an analysis in terms of moments and cumulants. The formal 

correspondence between the form of the correlation function given above and the 

moment generating function is: 

 

    
av

tM )exp(),( Γ−≡Γτ           (2.155) 

 

        )()1( tg=      (2.156) 

 

av
t)exp( Γ−  here signifies an average over Γ , weighted by the distribution function 

)(ΓG . The moments of the distribution are related to the derivatives of ),( ΓtM with 

respect to t. 

 

One can also define the cumulant generating function as the natural logarithm of the 

moment generating function 
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Therefore, one technique for characterizing this sum of exponentials is the method of 

cumulants. In the cumulants method, the logarithm of the normalized correlation function 

)()1( tg is expanded as a power series in time 
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In macromolecular and colloidal systems, the forces constraining the scatterers are 

usually weak and their motions can be described by coupled over-damped Langevin 

equations or the many-body diffusion, Smoluchowski, equation. Then on short-time 

scales, expansion of the dynamic structure factor can be written as 
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Recalling 
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We are interested in the initial time dependence of ),( tqF , we differentiate with respect 

to the delay time τ: 
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this is rearranged using the stationarity condition  
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to give,  
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the identity   
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for delay times short enough such that  
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we keep only the first two terms in the expansion of the last exponential, thus 
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and therefore 
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recalling that r∆ is a Gaussian random variable. 

 

where the time correlation function of two dynamical variables A(t) and B(t) is written as  
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( )tCAA (corresponding to the case when AB ≡ ) is called the autocorrelation function of 

the variable A [9]. The time correlation is written as an average over time: 
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The Hamiltonian is a constant of the motion and therefore )(tCAB is independent of the 

choice of time origin t; the correlation function is said to be stationary with respect to t. 

The stationary property of the time correlation function means that we can write 
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In particular: 
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repeated differentiation yields 
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using these rules along with the following property of the expectation value 
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where a is a constant.  We can begin to express the terms 1K and 2K as functions of the 

dynamic structure factor ),( τqF as 
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and 
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we assume that for ballistic motion 
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whereupon 
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becomes  
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and we can approximate 2K as 
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Therefore the constants in the cumulant expansion can be written as 
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and  

    22

2 qvK =      (2.198) 

 



 67 

The internal dynamics and dynamics of colloidal gels using dynamic light scattering 

techniques has been studied by Hobbie and Stewart [13] amongst several others. Their 

approach was to use the particle tracking methods of the correlation function. They found 

that the correlation function decays exponentially in space and exhibits a scaling in terms 

of the first moment. The second moment was found to be proportional to the mean-square 

particle displacement.   

 

In general, the first cumulant 1K defines an effective diffusion coefficient governing the 

initial decay of ),( tqF and K2 is proportional the velocity of the scatterer as it moves in 

the medium [29]. K2 can be re-written in terms of the mean square particle displacement 

as 
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It is well known that methods of statistical mechanics are appropriate to describe the 

thermo-elastic material behavior of rubber-like polymers [38]. Elastomers are considered 

a thermodynamic “system” since they have a definable boundary. The intensive 

thermodynamic state of an isotropic elastic solid is determined by the stress components 

and the temperature. Hence, at constant mass and composition, all the dependent 

variables of state (the volume V, the length L, the internal energy U, the entropy S, etc.) 

the elastomeric properties can now be considered in terms of stress, strain, time and 
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temperature. Discussions of this topic define these relationships either as 

phenomenological or molecular.  The phenomenological or mathematical basis would 

include the works of Mooney [25] and Rivlin [31] which subsequently produced the 

Mooney-Rivlin coefficients. The molecular basis, primarily using thermodynamics, 

originally was referred to as the statistical theory and is more commonly referred to as the 

Gaussian theory. Several authors have shown how network theory for a Gaussian chain 

can be extended through thermodynamic models to obtain a more general conceptual 

understanding of viscoelasticity [30][27].  

 

 

2.4 MICROMECHANICAL CONSIDERATIONS 

 

2.4.1 Elasticity of a Network 

 

The behavior of the polymeric host material we are considering, which contains chains of 

molecules or fiber-like structures, follows from the understanding of the behavior of a 

representative fiber [24]. 

 



 69 

 

Fig.11: A representative elastic chain detached from the network 

 

 To build up the statistical theory, one derives the probability for the end-to-end distance 

of an average chain lying between r and r + dr. The quantity ρ represents the mean length 

of a fiber segment. The probability density based on a Gaussian distribution is given by 
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
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For a detached Gaussian fiber, the mean-square end-to-end displacement averaged over 

time is  

 

        22
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3
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o
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and the quantity ρ is a representative fiber length of polymer. The subscript “o” signifies 

that average over 2r is taken with the chain out of the network. Since this is the length of 

all chains n taken with the chain out of the network-the value of 
o

r
2 averaged over all 

chains is 2)23( ρ . Imagine the chain now transferred back into the specimen to reform 

the network. Any deformation will now cause the chain to have an end-to-end length 

of
i

r
2 . This value of 

i
r

2 is not an intrinsic property of the molecule, but is a function 

of the specimen volume V. If V is changed then 
i

r
2 changes accordingly.

o
r

2  is an 

intrinsic property of the macromolecule and does not depend on the volume change. 

     

Consider a volume of initial dimensions 
ooo ZYX  to be deformed along the principal  

directions x, y, and z to the new dimensions X, Y, Z. Rubber is deformed at essentially no 

change in volume; therefore XYZZYX ooo = . The extension ratios in the three principal 

directions are 

 

o

x
X

X
=λ  ,

o

y
Y

Y
=λ ,

o

Z
Z

Z
=λ    (2.203)  

 

From this it follows that the product of the extension ratios are a constant, i.e. constant 

volume:        

 

1=zyx λλλ      (2.204) 
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Assuming any chain in the network deforms like the bulk rubber (affine deformation), all 

constituent chains and subsequently all points in the polymer will be subject to the same 

deformation: 

 

    iiii zkyjxir ˆˆˆ ++=
r

     (2.205) 

 

becomes  

 iziyix zkyjxir λλλ ˆˆˆ ++=
r

    (2.206) 

 

the change in the end-to-end vector produces a change in the end-to-end force from if
r

 

before deformation 

     [ ]iiii zkyjxiKf ˆˆˆ ++=
r

,   (2.207) 

 

to f
r

after deformation  

    [ ]iziyix zkyjxiKf λλλ ˆˆˆ ++=
r

.  (2.208) 

  

The stress-strain properties are calculated by equating the work done by internal forces to 

that done by external forces which create the deformation. Considering the work done by 

a uniaxial force on a representative fiber in the elastomer: 

 

           dzfw
iz

i

z

z

zz ∫=
λ

    (2.209) 
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Now this is the work done by the force zf  of one fiber. It depends on the square of the 

initial value of the z component of the end-to-end vector of that fiber. The work done by 

the force zf  of all n fibers in the specimen is obtained by averaging over all values of 2z : 
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All chains have the same ρ and imposed stretch (or compression) zλ , therefore  
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And by definition  

 

    
i

n
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22     (2.214) 

 

where 
i

z
2  is the mean-square value of iz in the undeformed state. The undeformed 

state is isotropic therefore 
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It therefore follows that  
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For a Gaussian fiber 2ρ controls the mean-square end-to-end distance 
o

r
2 of the fiber 

when it is unperturbed. It therefore follows that  
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The equations for the work done by all the xf and yf forces allow an identical argument, 

so that the total work done during the deformation is  
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2.4.2 The Strain Tensor 

 

When a body is deformed, the distances between points change. Let us consider two 

closely spaced points separated by a radius vector idx . The new radius vector joining the 

same points after deformation is defined as iii dudxdx +=' . The distance between the 

points are given by vector addition as ( )2

3

2

2

2

1 dxdxdxdl ++= prior to the deformation 

and ( )2

3
'2

2
'2

1
''

dxdxdxdl ++=  after. Using the general summation rule, we can write 

22

idxdl = ,  ( )22'2'

iii dudxdxdl +== . Substituting ( ) kkii dxxudu ∂∂= / , we can write 
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Since the summation is taken over both suffixes i and k in the second term on the right, 

we can put ( ) ( ) kiikklki dxdxxudxdxxu ∂∂=∂∂ // . In the third term, the suffixes i and l can 

be interchanged.  
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Then 2'
dl takes the final form 

 

kiik dxdxudldl 222' +=               (2.225) 

 

where  
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and for small strains becomes 
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2.4.3 Hooke’s Law 

 

Two independent scalars of the second degree can be formed from the components of the 

symmetrical tensor iku . They can be taken as the squared sum of the diagonal components 

( )2

iiu  and ( )2

iku . Expanding the free energy F in powers of iku  

 

22

2

1
ikiio uuFF µλ ++=   (2.228) 

 

This is the general equation for the free energy of a deformed isotropic body. The 

quantities λ and µ are called the Lamé coefficients. Any deformation can be represented 

as the sum of a pure shear and a hydrostatic compression  
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Where the first term on the right is pure shear and the second term is a hydrostatic 

compression. 

As a general expression for the free energy of a deformed body, it is convenient to write 

the free energy in terms of 2)
3

1
( llikik uu δ−  and 

2

iiu as 
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The quantities K and µ are called the modulus of hydrostatic compression and the 

modulus of ridgidity. K is related to the Lamé coefficients by 

 

     µλ
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2
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Using the general thermodynamic expression 
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to determine the stress tensor by calculating the derivatives ikuF ∂∂ / . Writing the total 

differential dF (for constant temperature): 
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In the second term, multiplication of the first parenthesis by ikδ  gives zero, leaving  

 

ikikllikllll duuuduKudF )
3

1(2 δµ −+=   (2.234) 

or writing ikikll dudu δ=  
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[ ] ikikllikikll duuuduKudF )
3

1(2 δµ −+=   (2.235) 

 

 Hence the stress tensor is related to the displacement vector u as  

 

   







•∇−+•∇= ikikikik uuuK δµδσ

3

1
2 .   (2.236) 

 

The first term shows the stress produced by a volume change and the second term is the 

stress caused by shear deformation. The coefficients K and µ are the bulk and shear 

modulus of the polymer. 

 

2.4.4 Thermodynamics of Deformation 

    

Let us consider the deformation of a body and suppose that the deformation is done in 

such a way that the displacement vector iu  changes by a small amount iuδ ; and let us 

determine the work done by the internal stresses in this change. 

 

Multiplying the force kiki xF ∂∂= σ  by the displacement iuδ and integrating over the 

volume of the body 
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where Wδ denotes the work done by the internal stresses per unit volume. We integrate 

by parts using Green’s theorem, obtaining 
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By considering the medium infinite and not deformed at infinity, we can make the 

surface integration in the first integral tend to infinity; then 0=ikσ  on the surface, and 

the integral is zero. The second integral can because of symmetry of the stress tensor ikσ  

be written as 
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thus  

 

     ikik uW δσδ −≡    (2.242) 
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Giving the work Wδ in terms of the change in the strain tensor assuming processes in the 

case of elastic deformations are occurring slowly enough that thermodynamic equilibrium 

is established in the body at every point. An infinitesimal change dE in the internal 

energy E of a unit volume of the body is equal to the difference between the heat 

acquired by the unit volume considered and the work dW done by the internal stresses. 

Thus 

 

dWTdSdE −=    (2.243)  

 

ikik duTdSdE σ+=    (2.244) 

 

This is the thermodynamic identity for deformed bodies. In hydrostatic compression, the 

stress tensor is ikik pδσ −= . Then iiikikikik pdudupdu −=−= δσ . By considering a unit 

volume, the change in the displacement vector is dVduii = . Therefore the 

thermodynamic identity becomes  

 

pdVTdSdE −=    (2.245) 

 

Introducing the free energy of the body, TSEF −= , we find the form  

 

     ikik duSdTdF σ+−=    (2.246) 
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for the thermodynamic identity. Finally, the components of the stress tensor can be 

obtained by differentiating F with respect to the components of the strain tensor for 

constant temperature 
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2.4.5 Cauchy Stress 

 

The stress-strain relationship sample volume in tension will be shown as the simplest 

case. For a specimen deformed along the z-axis from initial length oL , to a final length L, 

by an applied force F.  

 

  Fig.12: Deformation of an elastomer volume 
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The initial assumption of constant volume deformation will be made so that the volume V 

is 

 

    ALLAV ii ==               (2.248) 

 

in which iA  and A are the cross-sectional areas before and after deformation. The theory 

is formulated simultaneously for compression, in which case the force F is negative, so 

iLL < , and iAA > still holding the constant volume assumption. 

 

The stress-deformation or stress-strain response of an incompressible, hyperelastic 

material can be written in terms of the strain energy density function, U, and the principal 

stretch ratios iλ , jλ , kλ  and the  principal values of the stress are obtained 

 

via 

 

p
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∂
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λ
λσ     (2.249) 

 

where the subscripts refer to the direction of the deformation, p is a hydrostatic pressure, 

and iσ is the stress in the i-direction. Again, for affine deformation 1321 =λλλ . For the 

uniaxial deformations such as tension or compression, the stress-strain response can be 

given in terms of the principal stress difference 21 σσ − : 
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It is often the case that the behavior of rubber is represented in a simple stress-

deformation diagram. Early in the development of both phenomenological and molecular 

theories of rubber elasticity, an alternative method of looking at data arose based on the 

so called Mooney-Rivlin representation. This method of representation in terms of 

reduced stress arises when one examines the stress-strain relations that arise when the 

strain energy density function is assumed to have the Mooney form 

 

Mooney-Rivlin strain energy function  
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where 0C  and 1C are material parameters (Mooney-Rivlin constants). 
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For the ideal case of uniaxial tension/compression, where 1λ = λ , λλλ 132 == , the 

first principal stress difference 21 σσ − for a uniaxial deformation is given by  
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where θNk  can be shown in the limit of small deformations to be the shear modulus, G,  

of the matrix material and pv is the classification of swelling ( pv = 1 refers to the 

unswelled state). Therefore the change in principal stress is given by 
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The shear modulus G, is defined as the ratio of shear stress to engineering shear strain on 

the loading plane,  
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where the engineering shear strain is 
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xyyxxyxy εεεγ 2=+= .   (2.260) 

 

xyγ  is a total measure of the shear strain in the x-y plane. 

 

2.5 THEORY OF VISCOELASTICITY-MODELS 

 

Before attempting to devise a model to duplicate the viscoelastic behavior of an actual 

material, it is well to examine the response ε of ideal systems to a stress σ using 

analogical models. Ideal analogical models are assemblies of mechanical elements such 

as springs and dashpots with responses similar to those expected in the real material. 

They are used, very often, to provide a concrete illustration of the constitutive equations. 

The analogy stops there and never concerns itself with the physical mechanisms 

themselves.  
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              Fig.13: Symbolic representation of the analogical models of viscoelasticity 

 

THEORY OF VISCOELASTICITY-MODELS 

 

2.5.1 The Maxwell Model 

 

An ideal elastic element is represented by a spring which obeys Hooke’s law, with a 

modulus of elasticity E. This is the representation for linear elasticity where the elastic 

deformation is instantaneous and independent of time: 

 

         εσ E=            (2.261) 

 

A completely viscous response is that of a Newtonian fluid. This is a material whose 

deformation is linear with time while the stress is applied and is completely irrecoverable. 

A damper is used to represent linear or non-linear viscosity:  
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The two elements of spring and dashpot can be combined in two ways. If they are placed 

in series, the resulting Maxwell element exhibits flow plus elasticity on the application of 

stress. When the stress is applied, the spring elongates while the dashpot slowly yields. 

On the removal of the stress the spring recovers but the dashpot does not. Since both 

elements are connected in series, the total elongation is 

 

    DST εεε +=                (2.263) 

 

and the time rate of change in elongation is written as  
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Therefore, the strain is given by the equation  
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If we apply a constant stress oσσ =  to this system at 0=t  the solution will have the 

form  
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To find the constant 1C , an initial condition is needed. The sudden application of the 

stress oσ at 0=t means that )(tσ& has a singularity at this point. To deal with it, we must 

integrate across this point: 
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When 0→τ , the first term goes to zero and we are left with  
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where )0( += εε o  is the value of ε immediately to the right of  0=t . When we now find 

that    
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and hence      
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2.5.2 Fractional Models 

 

Through combinations of springs and dashpots one arrives at standard viscoelastic 

models, such as the Maxwell or Kelvin-Voigt model. Usually, these models involve a 

fairly small number of single elements. The problem here is that the corresponding 

ordinary differential equations have a relatively restricted class of solutions, which is, in 

general, too limited to provide an adequate description for the complex systems of the 

type dictated by a magnetorheological elastomer.  

 
Fig.14: Sequential realization of the fractional element model and a model representation 

of an MRE. This helps to illustrate the motivation for the use of fractional calculus. The 

volumes between inclusions at different length scales can be considered to have differing 

dynamic viscosities and elastic moduli. This model leads to a distribution spectrum of 

viscoelastic relaxation times as a function of probed length scales. 
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To overcome this, one can relate the stress and strain through viscoelastic models based 

on fractional derivatives with respect to time. In general, models based on fractional 

derivatives need fewer input parameters and allow for the interpolation between the 

purely elastic behavior of the Maxwell model and the purely viscous pattern of the 

Kelvin-Voigt model. Studies such as the ones by Koeller[17] and [34] have written on the 

theory of generalized fractional viscoelastic equations and their solutions.  

 

The study of viscoelastic behavior of a material by means of fractional calculus implies 

its modeling using differential equations with non-integer derivative order or transfer 

functions such as the quotient of polynomials in real powers of s. Modification of 

classical models can be obtained by relating the stress through a differential equation of 

order q: considering that the response functions J(t) and G(t)  are a linear combination of 

those found in the previous models. J(t) and G(t) are the summation of vanishing 

exponentials with different relaxation times, linear functions and Dirac delta functions, as 

follows; 
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with )(_ tG δ  being a response in the form of a delta function.     

 

By performing the Laplace transform on the previous models we obtain 
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sG(s) can be expressed as a rational function in the complex plane with real poles and 

zeros: 
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The stress-strain behavior can be modeled by the following differential equation: 
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Formally, a fractional model extending the derivative order k in the last expression to 

non-integer values can be obtained. This implies the substitution of the classic models 

with a finite distribution of delay and relaxation times, for models that involve a 

continuous distribution.  
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2.5.3Maxwell Fractional Model 

 

The mechanical models in fractional calculus use a model intermediate between ideal 

springs and dashpots denominated the Scott-Blair model called a spring-pot, which is 

represented by a fractional derivative orderα .  

 

Fig.15: The Scott-Blair or fractional element in the context of our MRE model 

(represented in the volume between to spherical inclusions by the triangle). The 

fractional element is a modified combination of the traditional spring and dashpot 

viscoelastic models. It allows modeling of the fractional relaxation behavior of 

our material as interpreted by dynamic light speckle.    

 

These elements can be built by means of structures in trees, cascades, lattices, etc., of 

discrete elements, springs and dashpots.    

  

The differential fractional equation corresponding to this element is 

 

α

α
α ε

τσ
dt

td
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)(
)( = ,
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τα

−
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
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
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≈

tE
tG

)1(
)(   (2.268) 

 

In Maxwell’s fractional model the total strain is the sum of the partial strains in each of 

the Scott-Blair elements 
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for a given stress in an element. By adding both expressions and performing the α-order 

derivative, the fractional differential equation for Maxwell’s model is obtained: 

 

α

α
α

βα

βα
βα ε

τ
σ
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)( =+

−

−
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Using the properties of the Mellin transform and the Fox integral (West, Bologna, 

Grigolini) [40] the time relaxation modulus is obtained as follows: 
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where Ek,µ is the generalized Mittag-Leffler function defined by 

 

∑
∞

= +Γ
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,
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n

k
kn

z
xE

µ
µ .  (2.273) 

 

The time relaxation modulus approaches, for different ranges of time, two negative power 

functions of time. This fact is related to two types of relaxation processes: one for short 

times in which t<<τ and the other one for long times where t>>τ: 
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and 
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Taking the Naperian logarithm of the relaxation modulus for times both much greater 

than and much less than the characteristic timeτ : 
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tk lnln 2 α−=     (2.281) 

 

 

Fitting of the plot of the natural logarithm of the true stress, found from the Mooney-

Rivlin model, versus the natural logarithm of time should yield two straight lines whose 

slopes are in fact the orders β and α of the fractional derivatives. From the values of the 

two constants and the average relaxation time, τ, we can obtain the fractional elastic 

modulus, E, of the material from the Maxwell fractional form 

 

βτ
β )1(

1
−Γ

=
E

k  and ατ
α )1(

2
−Γ

=
E

k   (2.282) 

 

βτ

β )1(1 −Γ
=

k
E  and 

ατ

α )1(2 −Γ
=

k
E    (2.283) 

 

Viscoelastic models based on fractional derivatives of time need fewer input parameters 

and avoid oscillation [3]. This model has been used to study specifically the relaxation 

modulus in PMMA and PTFE polymers [12].  
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CHAPTER 3 

 

EXPERIMENTAL METHODS AND TECHNIQUES 

 

3.1 Sample preparation and SEM classification 

 

We studied the magnetostrictive properties of two types of MRE composites. The first 

type was an isotropic sample created at Ford Motor Company (Dearborn, MI.). This 

sample was one of a natural rubber (cis-polyisoprene) matrix with a magnetic dispersed 

phase. The dispersed filler phase was Magnox-Pulaski magnetite ( 43OFe ) TMB-1260. 

This inclusion had a bulk saturation magnetization of 4.8E 5 A/m and was present at 

approximately a 27% volume fraction. These materials, together with the necessary 

crosslinkers and processing aids, were mixed together on a conventional two-roll mill. 

The resulting material was thinly spread between glass slides and exposed to 

temperatures of order C
o150 for durations of 10 to 30 minutes. 

 

The second type of MRE samples were created at the University of Michigan-Ann Arbor. 

These are samples of varying levels of anisotropy due to their cure process. The GE 

Silicones Red RTV 106 silicone rubber matrix was mixed with varying volume fractions 

of ISP Technologies Grade R-1430 carbonyl iron particles. Carbonyl Iron is known to 

have a bulk saturation magnetization of 1.9E6 A/m. Immediately following mixing the 

combined material was placed in a rubber mold and allowed to cure in differing levels of 
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an applied magnetic field. The duration and magnitude of the field applied during cure 

dictated the level of anisotropy.    

 

Subsequently, SEM was done on our samples to aid in the characterization of the internal 

structure. As can be seen, it is obvious that varying the volume fraction and the 

application of an external magnetic field to the MRE as the matrix cures will drastically 

alter the internal order.  

 

 
31(X25K)     31(X4K) 

 
60(X800)     60(X1.2K) 

 

Fig. 16: Actual scanning electron microscopy images of the MRE samples used in this 

study 
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3.2 Review of the experimental set up at Argonne National Labs 

The experimental approach was to apply newly developed coherent x-ray techniques to 

probe material dynamics and mechanical properties at relevant length scales. The 

interparticle dimensions that were probed were on the order of nanometers. The 

advantages to using x-rays in this method are the following. First, x-rays are penetrating. 

This allowed us to non-destructively probe our material. Secondly, the coherence lengths 

of our highly coherent x-rays were on the order of the interparticle separation. Most 

importantly x-rays are strongly scattered from heavy objects such as iron. This gave us a 

distinct image of the interparticle dynamics. 

 

Fig.17: Application ranges for various optical probing methods.   
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APS undulator A was the x-ray source we used for the experiments described here. For 

the XPCS experiments, we set the undulator fundamental at 9.0kev .The x-ray source 

dimensions are 350 µm in the horizontal and 50 µm in the vertical and the divergences 

are 25 µrad x 5 µrad. The white beam was collimated with white beam slits set to 

nominally 100 µm by 100 µm and placed 27m from the source.  Two small Pt mirrors 

separated by 0.95m and set at o45.0  were used to produce a pink beam. The doubly 

reflected beam had a spectrum with an average energy of 7KeV, with a bandbass of 

%.55.2/ =∆ EE This produced a coherent x-ray intensity as large as 10106.3 X photons/s 

in an aperture of (5µm)
2
. 

 

With these numbers, the source coherence lengths were calculated to be 1 µm x 5 µm at a 

wavelength of 1.62A. At a sample distance of 55m the coherence lengths (standard 

deviations) were approximately 4µm x 30µm. Finally, although the frequency distribution 

of the undulator varied with position in the beam, it did not vary significantly over its 

coherence lengths and so an undulator is considered a monochromatic source if small 

sample volumes are considered.  

 

The coherent beam characteristics used in our experiments were an x-ray energy, E of     

7 kev, a wavelength, λ of 1.771A and speckle size=24.5 µm. 

 

Monochromatic x-rays were used to probe the sample as shown in the configuration 

outlined in figures 11a), 11b) and 11c).  
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a) 

                 b) 

                                  c) 

Fig. 18 Schematic representation of MRE experiment performed at Argonne. Frame a) is a 

schematic representation illustrating the x-ray optics layout, frame b) shows the arrangement of 

the magnet and the detectors used to acquire the speckle data and frame c) is an actual 

photo of the experimental set-up. 
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Coherence ( )1S  and guard slits ( )2S  are used to select only the transversely coherent 

section of the beam. For this geometry and x-ray wavelength, the size of a single speckle 

spot was calculated to be 8µm therefore the slit openings are set to ≤ 10 µm. Tapered axial 

holes were bored in each pole piece, allowing the beam to travel parallel to the field lines 

in the sample. The coherent beam enters a hole in the first pole piece of the dipole 

electromagnet, GMW-3470, and travels 18cm to the sample (MR1).  

 

Time dependent speckle patterns were measured with a CCD chip positioned to capture 

directly the small-angle scattering. The optical components were aligned such that all the 

points lying on the circumference of a circle would have the same scattering vectors. The 

sample detector distance is chosen so that the speckle size is an appropriate match for 

CCD pixel resolution limited by the 7 µm pixel size. A Bicron photomultiplier detector 

with 64 µm slits (S3) was used for calibration but the CCD was selected for data 

acquisition for the following attributes: efficient parallel data acquisition, the ability to 

access very small scattering angles (corresponding to scattering wave vectors from 

0.001A <q<0.01A) and enhanced statistics enabled by averaging over annular regions of 

fixed q. 

 

A Texas Instruments TC253 low noise, high sensitivity charge coupled device (CCD) x-

ray camera specially constructed with 7.4 µm pixel width in a 658 x 494 array was 

controlled by a 12-bit QMAX 650 camera. Digital images were transmitted to a 

microcomputer and recorded as a movie with KSA 400 image acquisition software. 

Using an area detector allows us to measure ),( tqI for many different q vectors 
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simultaneously. A profile of radial intensity with respect to wave vector q was extracted 

from the data and fit to a Guinier curve. The temporal fluctuations in intensity were 

recorded for each pixel and characterized with the intensity auto-correlation function 

).()2( tg  Images of the speckle pattern were acquired into the memory of the computer 

with frame times varying from 50-300 ms and the correlation results for each pixel were 

averaged with all others at a radius q from beam axis. The time dependence of these data 

is a direct function of the scatter motion at a length scale in the material given by 

qLo π2= . 

 

3.3 Experiment 

 

In order to understand the magnetostrictive behavior we subjected the MRE composite to 

a time-varying magnetic field while probing the sample with x-rays. Most of the 

measurements were performed with a periodic (on-off) square wave variation of the 

applied field. The purpose of this was to measure the dynamics of the material following 

various magnetic field perturbation situations, including suddenly switching it on and 

suddenly turning it off.   

 

The sample was rigidly constrained between kapton slides in the gap between the pole 

pieces in the position shown as MR1 in figure 11. Alignment was such that the 

longitudinal or cure axis of the sample coincides with the x-ray beam axis. This was to 

ensure that the scattered x-ray wavevector had its principal component along the 
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magnetic axis and therefore is most sensitive in this geometry to the particle-particle 

interactions as illustrated in figure 12. 

 

Fig.19 Optimized orientation between beam direction and inclusion chain. The incoming 

coherent x-rays are scattered from inclusions that have formed into highly ordered chains. 

The direction of the alignment (or cure axis) was dictated by the direction of the magnetic 

field applied during matrix cure.   

 

  

The amplitude of the cyclically applied magnetic field was approximately 1.7 Tesla and 

was switched at 0.25Hz for samples of series 31 and 0.09Hz for samples of series 60, 

which were viscoelastic and required more time to relax.  

 

The dynamic light scattering or speckle patterns created by this configuration were 

collected and recorded as scattering vector-dependant intensities. The data sets were 

recorded real time and stored as viewable AVI files. These images were then divided into 

rings of radius scattering vector q and autocorrelated frame-by-frame.   

 

The data were analyzed by studying the decaying intensity autocorrelation function as a 

function of scattering vector.   
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Fig. 20: Idealized experimental sequence used in the evaluation of a MRE using x-ray 

speckle autocorrelation. 

 

 

 

Fig. 21: Image of actual speckle as collected by a CCD camera. The white annulus 

superimposed on the image is a representation the area of collected data at a given radius 

from the beam axis. This radius is the scattering vector q.  
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CHAPTER 4 

 

ANALYSIS, RESULTS AND DISCUSSION 

 

4.1 Extracting Physical Properties From Speckle Data 

 

Several past works utilizing dynamic light scattering to explore the dynamics of non-

interacting particles in colloidal gels have been recorded[29]. The interpretation of the 

light scattering by Brownian particles in terms of a generalized Stokes-Einstein relation 

has formed the basis of the interpretation of much of the experimental data[29]. In this 

section, we will outline, for the first time, a Stokes-Einstein type methodology to examine 

the dynamic behavior of magnetic solid elastomer composite. From this we will obtain 

the mean square displacements of the scattering sites at differing scattering vectors. This 

will allow us to determine different material properties and mechanical constants of the 

MRE.  

 

In our experiments we have excited our MR elastomer with a magnetic field and recorded 

the relaxation in the material via the change in the scattered light pattern. The time-

dependent change in intensity of the speckle pattern is a direct function of the material 

relaxation. As the material relaxes the spatial arrangement of scattering sites changes. 

Therefore the level and time rate of change of the intensity decorrelation is proportional 

to the displacement and time rate of change in the particle motion. We have previously 

defined )2(g  as the intensity autocorrelation function (eqn.1.1) 
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Below we have plotted the function 1)2( −g  as a function of time for MRE samples 31 

and 60. These plots represent the material behavior in response to a cyclically applied 

magnetic field.  
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Fig .22 The autocorrelation function for MRE 31 (A) and MRE 60 (B). The behavior in each plot 

is composed of two portions. A creep relaxation of the bulk material (the base downward trend) 

with a periodic response to the actuating magnetic field superimposed. Note: the response of the 

system 60 was so fast following the magnetic perturbation (field on – field off) that only a single 

data point shows significant change in intensity. Data are recorded every 4 seconds and thus the 

data points during the steady state (constant field) condition appear as a continuous curve. 

 

 

In each plot what is shown is the complete response to our test. This complete response is 

the relaxation behavior of our MRE which falls into two regimes. The first regime is one 

that reflects the creep relaxation at a given temperature of the composite. In the intensity 

plots this is shown as the overall downward trend in the correlated intensity. This room 

temperature relaxation will be referred to as the baseline or “slow” regime. 
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Fig .23: The autocorrelation function of the baseline relaxation for MRE 31 (a) and MRE 

60 (b) 

 

This long-time relaxation could be due to the assumption that each polymer fiber in a 

highly entangled system moves or “reptates” in a tube formed by other fibers. 
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This is in contrast to the short time scale direct response to the imposed magnetic field. A 

state of high correlation in )2(g at time t =0, corresponds to an initial displacement of the 

filler by the magnetic field to an interparticle spacing approaching qπ2 .When the 

magnetic field is removed, the material relaxes to its initial pre-field arrangement. This 

will be referred to as the dynamic or “fast” regime.  

(a) 

 (b) 

Fig .24: The autocorrelation function in the fast regime for MRE 30 (a) and MRE 60 (b) 

illustrating the response profile to the applied field. 

 

The stimulus profile is that of a square wave, we can see from the plots of the 

autocorrelated intensity that the response does not have a square profile. This illustrates 
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that there are non-linear mechanical processes that are governing the material response 

behavior. Again, the total material response is a superposition of these two separate 

behaviors in the two time regimes.    

 

When the field is applied there is an initial elongation of the material. After the field is 

turned off, the material/scattering site relaxes away from this position as a function of 

time given by the mean square displacement >∆< )(2 tL . We can consider the 0=t  

configuration as a state of high stress, 1σ , and a state of lower stress at a later time t, 

defined as 2σ . We are concerned with the rate of relaxation that corresponds to this 

change in elongation and the associated change in stress. 

 

4.2 Charateristic Relaxation Times from the Intensity Autocorrelation Function
 

 

Consider the deformation of a unit cube of viscoelastic gel with fiber network density ρ . 

The displacement vector of any two points is assumed to obey the following linear 

equation  

 

t

u
f

t

u

∂

∂
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∂

∂
rr

σρ ~
2

2

  (4.1) 

 

This equation is a representation of Newton’s second law. The term on the left represents 

the mass times acceleration of a unit cube of the fiber network. The terms on the right 

hand side represent the forces exerted on the cube. The first is the net force of the internal 
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stresses and is expressed as the difference of the two internal stresses on the opposing 

walls of the unit cube. Therefore it is given by the divergence of the stress tensorσ~ . The 

second term is the viscous damping force. 

 

If this is taken to represent the volume of elastomer between two neighboring magnetic 

inclusions in the sample then  

 

 

Fig .25: A simplified representation of the mechanism for relaxation in an MRE 

material as it relates to XPCS. The spring and dashpot are representations of the 

simultaneous viscous and elastic aspects of the mechanical response. 

 

 

≡
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u
ρ  the net force on the end spheres 

 

≡•∇ σ~  the internal stress due to loading 
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≡
∂

∂

t

u
f viscous damping  

 

 

σ~ is a stress tensor whose component ikσ gives the force along the k axis on a unit plane 

perpendicular to the i axis 
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where (eqn.2.218)   
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After substitution we obtain an equation for the displacement vector u as follows, 
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 At this point let us introduce the Fourier transform of the displacement vector,  
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Restricting the motion to one dimension, we can choose the z axis in q space without loss 

of generality, 

 

     ),0,0( qq =     (4.5) 

 

Substituting in the transform u(q,ω) we find 

 

0222 =−− zlzz uqcuifu ρϖρϖ    (4.6)  

 

and 

 

0222 =−− jtjj uqcuifu ρϖρϖ    (4.7) 

 

for l, longitudinal modes and t transverse. Where 

 

       ρ
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Earlier works in dynamic light scattering has shown by measuring the time correlation 

functions of the electric field scattered from a viscoelastic gel that motions or fluctuations 

along the beam axis are governed by the mechanical properties of the matrix[37] 
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where  

 

   ECCGGK ====+ 114433)
3

4(     (4.10) 

and 

     
2

q

f
=η      (4.11) 

 

The constant f is defined as the frictional constant of the elastomer. Therefore the 

displacement can be shown to be proportional to an exponential function governed by the 

retardation time  

 

ητ

E
=

1
      (4.12) 

 

Where, E, and,η , are Young’s modulus of elasticity and dynamic viscosity at a given 

length scale respectively. However, because of the Gaussian properties of the electric 

field, the correlation function of the intensity is given by the square of the correlation 

functions of the field. Thus the decay constant τ1=Γ  becomes [ ]η/2 E . The time-

dependent autocorrelated speckle intensity, 1)()2( −tg  at a specific scattering vector is fit 

with  
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    btaetg −=−1)()2(     (4.13) 

 

to match the form of the Siegert relation  

 

2
)1()2( )(1)( tgtg +=      (4.14) 

 

Therefore, as we have shown, our characteristic times of relaxation are given by  

 

    
η

E
b

2
2 =Γ=     (4.15) 

We have plotted τ  as a function of scattering vector. 
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6003 BASELINE RELAXATION TIMES
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Fig .26: The characteristic baseline relaxation time (a) MRE 31 and (b)MRE 60    

 

 

 

4.3 Deriving Relative Elongations From The Intensity Autocorrelation Function 

 

The core of this unique approach is to solve for the particle displacements in this visco-

elastic solid elastomer composite using only the decay in the magnitude of the intensity 

autocorrelation function. The decay rate of this function directly corresponds to the time 

scale of translation by the dispersed magnetic phase in the matrix. This can be seen to be 

the decay rate of the dynamic structure factor via the Siegert relation  
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Where the ratio )(),( qStqF is defined as the intermediate scattering function, ),( tqF the 

dynamic structure factor and )(qS the static structure factor. Thus, we can begin to 

examine the relaxations through the electric field correlation function )()1( tg .  

 

We will write )()1( tg  as an exponentially decaying function resembling a Stokes-Einstein 

relation 

    

    ( ))(exp)( 22

0

)1()1(
tLqgtg

t
∆−≡

=
.  (4.21)  

 

)(2 tL∆  is the time varying mean square displacement of the scattering sites at a specific 

value of scattering vector q (as the scatterers move away from the configuration of high 

correlation). 
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Fig.27: The dynamic structure factor MRE 30 in the fast regime. This figure 

demonstrates strong dependence in this regime on scattering vector. 

 

 Because we are looking at a relative change in the intensity of the speckle, )()2( tg  we 

can make the assumption that  

 

    
2

)1()2( )(1)( tgtg ≅−                (4.22) 

 

( )2
22

0

)1()2( )(exp1)( tLqgtg
t

∆−≅−
=

 (4.23) 
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using the definition for the scattering vector 
o

Lq π2=  we can define  

 

    
oL

tL
tLq

)(
2)(

∆
=∆ π    (4.24) 

      

 

and rewrite the intensity autocorrelation as a function of relative elongation  
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Taking first the square root  
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and then the natural logarithm of both sides 

 

   

2

0

)1()2(
)(

2ln1)(ln 








 ∆
−




=





 −

=
o

t L

tL
gtg π        (4.26) 

 



 120 

Defining 

 

    1)0()2(

0

)1( −=
=

gg
t

                  (4.27) 

  

 

we can solve for the relative length change   

 

    ( ) ( )1)(ln1)0(ln
2

1)(
)2()2( −−−=

∆
tgg

L

tL

o π
  

                        (4.28) 
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Fig .27: The relative elongation as a function of time for (a) MRE 31, 

(b) MRE 60 and (c) fast regime of MRE 31 
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We may now easily arrive at a rate for the relative length change as  

 

    
dt

txd

Lo

)(1 ∆
                                (4.29)  

 

or the slope of a plot of the relative length change as a function of time. 

 

4.4 Calculating Elastic Modulus with Fractional Calculus 

 

We have shown that the Cauchy stress associated with the deformation of the elastomer 

from the initial length oL  to a final length L, by an applied force is given by 
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By arriving at the principal stress difference, we can apply the technique of fractional 

calculus to arrive at an estimate of the relaxation modulus. We have earlier shown that 

the function representing the uniaxial stress can be represented in the form 

 

α

τα
σ

−
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


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−Γ
≈

tE
t

)1(
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and that after algebraic manipulation 
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( )
t

E
ln

1
ln α

α

τ α

−
−Γ

=    (4.34) 

 

tk lnln α−=     (4.35)  

  

So we can now plot a form of the Cauchy stress and perform a linear regression to 

calculate an estimate of the Young’s modulus of the composite material. 
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Fig .29: Ln-Ln Plots of stress relaxation data for (a) MRE 31 and (b) MRE 60 
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Zhou and Li [44] have used finite element analysis to calculate the zero field modulus of 

an MRE. Their program was based on the incursion model (rigid ferrous particles 

embedded orderly in a matrix) and the Ogden strain model (the model for describing the 

mechanical properties of rubber). This process has been reported by Davis. Using the 

experimental data of the extension deformation of a pure rubber MRE with a 27% 

volume fraction (generated by Davis), Zhou and Li generate a curve for the zero field 

Young’s modulus versus interparticle separation. Their results are very similar in profile 

and magnitude as our model. Using the relative elongations found with the 

autocorrelation function, the Cauchy stress and techniques of fractional calculus we have 

found a zero-field modulus that ranges with length scale from 26MPa to12MPa. The 

finite element analysis of Zhou found a length scale varying zero-field modulus that 

ranged from 10MPa to 2MPa. Our method has also been used to estimate the elastic 

modulus of MRE sample 61. This sample is similar to one tested by Bednarek [1]. 

Bednarek’s MRE sample was one with a RTV silicone matrix and inclusions of both 

graphite and silicon steel particles. His tests for this material yielded a Young’s modulus 

of 5.53MPa. The speckle relaxation tests found a length scale dependant elastic modulus 

ranging from 4.5MPa to 4MPa.   
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(a) 
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(b) 

 

Fig. 30: Values of the elastic modulus for MRE 31 (a) and MRE 60 (b) samples               

extracted from the fractional modulus approach. 

 

 

 

 

4.5 Calculating Length Scale dependant Dynamic Shear Modulus 

 

Exploitation of the dynamic response to the cyclically applied magnetic field will now 

allows us to extract the scattering vector dependent dynamic shear modulus. In what we 
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will now refer to as our dynamic or fast regime studies of MRE response, we will use the 

local chain model of Jolly[15] discussed earlier.  

 

The magnetostrictive response of the MRE composite is strictly a function of the dipole-

dipole interaction force between the magnetic inclusions. Jolly has put forth a simple but 

effective local shear model for this interaction. As shown earlier, in the small strain 

approximation, that (eqn.2.50) 

    ε
µφµ

εσ 







≅

3

2

2
)(

h

MoR  (4.35)  

 

represents the local shear stress. The shear modulus G of the particle chain is (eqn.2.51) 

 









≅

3

2

2h

M
G oR µφµ

   (4.36) 

 

where dLh 0= where d is the particle diameter and 0L  is the interparticle 

separation qπ2 (see fig.2).  
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(a) 
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(b) 

Fig. 31: The dynamic shear modulus for MRE 31 (a) and MRE 60 (b) 

using the local dipole-dipole model 

 

 

 

 

4.6 Using the Method of Cumulants to estimate mechanical properties 

 

The basis of the cumulant expansion that is usually used in the analysis of dynamic light 

scattering lies in expanding the logarithm of )1(g in terms of cumulants of the distribution. 
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This relation follows from the fact that the nth cumulant is the coefficient of ( ) !nt
n

−  in 

the Taylor expansion of ( )Γ− ,tK  about t=0, as given by 
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Where we have earlier defined  
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We can therefore write  
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In this way we use the decaying intensity autocorrelation function to find the Young’s 

modulus, relative elongations and dynamic viscosity of this material. We can compare the 

values of K1 and K2 found directly by a second order polynomial fit of [ ])(ln )1( tg  to those 
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found via a mechanical evaluation of the colloidal dynamics. This allows us to physically 

understand the decay of the electric field autocorrelation )()1( tg  and thus )()2( tg . 
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Fig. 32: A comparison of the method of cumulant fit to parameters found using other 

methods in the “slow” and “fast” regimes for (a-c) MRE 31 and (d and e) MRE 60  

 

It has been emphasized by Pusey and Tough [29] that the accuracy of the cumulant 

method is higher for short time motions. This can be seen in the comparison in the fit of 

K2 for the long term or baseline rate versus that of the direct or magnetically driven short 

time response of MRE sample 31. The statistical fitting accuracy associated with the 

method of cumulants in photon correlation spectroscopy has been evaluated by other 

authors [35].  

 

4.7 Calculation of the length scale dependant magnetic interaction force 

 

MRE response to an external magnetic field manifests itself in a contraction of the 

material. As we have stated, this ability to do work is accomplished due to the interaction 

forces and is the driving motivation for the study and production of such materials. 
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Therefore, of ultimate importance in the study of MRE composites is the ability to 

quantitatively characterize the dipole-dipole interaction forces. 

 

As the dispersed magnetic phase responds to the applied field the spherical inclusions are 

displaced in the elastomer matrix. We use the model of Hertz’s spherical indenter shown 

earilier (eqn.2.78) to find the interaction force for this displacement   

 

       
( )

2/3

13

8
δ

ν−
=

RG
P  ,   (4.41) 

 

where P is the force required to displace the spherical inclusion a distance δ. The 

displacement δ is equal to the mean displacement x∆ . Therefore the force can now be 

written as 
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This model yields a Nr1 dependence law for the magnetic dipole-dipole interaction 

force. Considering the magnetic interaction energy  
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And then the first derivative with respect to the interparticle separation r 
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dr

dE
F 12

12 −∝      (4.44) 

 

Furst and Gast [5] have used dual-trap optical tweezing to study the micromechanical 

properties of dipolar chains in MR suspensions. Using this method they were able to 

observe the field dependence of chain rupture. Their study was of a magnetic chain of 

0.85 µm diameter polystyrene (PS) microspheres embedded with monodomain (11nm) 

iron oxide particles that caused the beads to exhibit a paramagnetic response. Using this 

method, they found tensile forces required to break the representative chain on the order 

of 5 to 25 pN. The force-displacement method used here allows us to make 

measurements in a regime where the forces are much larger than in a liquid environment 

where the optical trapping measurements were performed. Our samples have 

ferromagnetic rather than paramagnetic interactions between particles; the interactions 

are much stronger. For MRE sample 31, we have found forces ranging from 1.4E-5N to 

1.0E-5N and 3.5E-4N to 5.0E-5N for MRE sample 60. Both samples are shown to follow 

a Nr1 length scale dependence. 
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Fig. 33: The length scale dependent magnetic interaction force for (a) MRE 31 and (b) 

MRE 60  

 

The parameter N classically is found to be 4 from the dipole-dipole model. Careful 

examination of the results of the method here allow a real examination of the 

magnetostrictive forces found in a MRE material under realistic conditions. Comparisons 

of figures 24 a) and b) show that for the highly anisotropic MRE 60 that the r dependence 
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goes as 5.1=N  and for the isotropic MRE 31 the separation interaction is best 

approximated with 2=N . The ability to examine these interparticle forces in this 

manner is a trait unique to this method. 

 

Fig. 34: A set of curves based on the length scale of the argument above to help visualize 

the interaction force length scale dependence.  
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CHAPTER 5 

 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES 

 

Active composite materials have several promising applications from automotive and 

industrial engineering to medical applications. As with any application, system 

optimization is of utmost importance, but this is only done by completely understanding 

each component. In the case of MRE materials, it is crucial to have detailed knowledge of 

the microscopic behavior which, as we have shown, is only accessible by certain 

specialized techniques such as XPCS.  

 

By combining XCPS and fundamental mechanics of materials we can look at the in-situ 

response of a MRE and begin to truly understand how to optimize this up and coming 

class of materials. We have shown that the speckle patterns that arise when these 

disordered materials are illuminated by coherent x-rays are true representations of their 

structure and dynamics. The magnitude of the intensity autocorrelation function is shown 

to be a direct function of the time-dependent particle mean square displacement. It was 

also shown that by utilizing the Siegert relation, and the method of cumulants and 

methods of fractional calculus, that material properties and internal dynamics can be 

directly extracted from the relaxation curve. This is the first such study to make this 

connection, demonstrating that mechanical properties can be measured from x-ray 

speckle data. 
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Our study also emphasized the finding that the expansion of the electric field 

autocorrelation function )(1 tg , extracted from the coherent x-ray scattering holds 

important physical information on the relaxation dynamics. It was found that the second 

order polynomial fit of )](ln[ 1 tg  can give a direct first approximation of the material 

elastic modulus, viscosity and the short-time velocity of the particles. This has significant 

value to materials research. Real time knowledge of the mechanical properties of a 

material during use is crucial to mastering and optimizing design.  

 

Our study has verified in a new regime of study that the following MRE parameters are 

important: particle size, particle ordering and the MRE matrix material. Particle size and 

distribution are key factors in the magnetostriction mechanism. Further studies would 

include using these techniques on magnetic particulate composites with differing levels 

of anisotropy, particle size and magnetization to compare this to the ability of the 

material to perform. For MRE composites this would be a study of how the internal chain 

structure affects the length scale dependent interaction forces.  

 

Our results for the natural rubber MRE have found a zero-field modulus that ranges with 

length scale from 12 MPa at 120nm to 26 MPa at 20nm. Finite element models for a very 

similar material yielded a zero-field modulus that ranged from 2 MPa to 10 MPa. The 

RTV based sample was in good agreement with a similar material that was tensile tested. 

The results for the tensile tested sample yielded a Young’s modulus of 5.53 MPa while 

speckle relaxation tests found a length scale dependant zero-field elastic modulus ranging 

from 4 MPa to 4.5 MPa. Subsequently, we have used continuum mechanics to study the 
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length scale varying magnetostrictive force. We have found forces ranging from 1.0E-5 N 

to 1.4 E-5N and 3.5 E-4N to 5.0 E-5N depending on the sample. The interaction force is 

shown to follow a Nr1 length scale dependence where N is a function of the level of 

internal anisotropy and ranges from 25.1 ≤≤ N . 

 

Future work in magnetorheological elastomers would include, but is not limited to, MRE 

complex mechanical measurements and MRE transport measurements. These techniques 

can also be used to probe fluid based rheological systems: both electrorheological 

materials and ferrofluidics.  

 

In the future, the techniques used here can be applied to a far wider class of materials 

than these polymeric based composites. The dynamics of any system with a high level of 

order on the scale of the x-ray wavelength is now accessible. These systems could 

include magnetic nanostructures (alternating layers of magnetic and non-magnetic 

materials) probing for magnetostrictive effects, domain structures and switching 

dynamics-fast measurements of speckle using picosecond x-ray sources (both laser based 

and accelerator based), stress effects in semiconductors (semiconductor superlattices, 

GaAs/AlAs for example) relaxation after heating or applied stress, the study of shape 

memory alloys and the mechanics of interfaces. 

 

 

 

 



 142 

REFERENCES 

 

[1]Bednarek, S., Materials Science and Engineering B 55, 201-209, 1998 

 

[2]Boissis G., Bellan C., International Journal of Modern Physics B 16: 2447-2453, 2000 

 

[3]Bossemeyer H.G., Mechanics of Time-Dependent Materials 5, 273-291, 2001. 

 

[4]Davis L.C., Journal of Applied Physics 85, 3348-3351, 1999 

 

[5]Furst, E.M. and Gast, A.P., Physical Review E 61 (6), 6732-6739, 2000.  

 

[6]Fishbane, P.M., Gasiorowicz S., Thornton S., Physics for Scientist and Engineers, 

    Printice-Hall, Inc., New Jersey, 1996 

 

[7]Ginder J.M., Proceedings of the SPIE- The International Society for Optical 

     Engineering 3985,418-25, 2000 

 

[8]Häuβler W., Wilk A., Gapinski J., Patkowski A., Journal of Chemical Physics 117,   

     413-426, 2002 

 

[9]Hansen J.P., McDonald I.R., Theory of Simple Liquids, Academic Press, New York, 

     London, and San Francisco, 1976 

 

[10]Halliday D., Resnick R., Physics, Wiley, New Your, 1986 

 

[11]Harpavat, G., IEEE Transactions on Magnetics vMAG-10 3, 919-922, 1974 

 

[12]Hernandez-Jimenez A., Hernandez-Santiago J., Macias-Garcia A., Sanchez-Gonzalez 

       J., Polymer Testing 21 325-331 (2002) 

 

[13]Hobbie E.K., Stewart A.D., Physical Review E 61, 5540-5544, 2000 

 

[14]Ivanov A.O., Kuznetsova O.B., Journal of Magnetism and Magnetic Materials 252,  

      135-137, 2002 

 

[14]Jackson J.D., Classical Electrodynamics, Wiley, New York, 1962 

 

[15]Jolly, M.R., Carlson, J.D., and Munoz, B.C., Smart Materials and Structures 5, 607- 

      614, 1996 

 

[16]Kim H., Ruhm A., Lurio L.B., Basu J.K., Lai J., Mochrie S.G.J., Sinha S.K., Journal   

      of Physics-Condensed Matter 16, S3491-S3497, 2004  

 



 143 

[17]Koeller R.C., Journal of Applied Mechanics. 51, 299-307,1984 

 

[18]Koppel D.E., Journal of Chemical Physics 57, 4814-4820, 1972 

 

[19]Korotkova O., Salem M., Wolf E., Optics Letters 29, 1173-1175, 2004 

 

[20]Kristof T., Szalai I., Physical Review E 68, 41109-1-8, 2003 

 

[21]Landau L.D., Lifshitz E.M., Theory of Elasticity, Pergamon Press,Oxford-New York  

      1986 

 

[22]Lumma D., Lurio L.B., Borthwick M.A., Falus P., Mochrie S.G.J., Physical Review 

      E 62, 8258-8269, 2000 

 

[23]Mase G.E., Mase G.T., Continuum Mechanics for Engineers, CRC Press, 1992 

 

[24]McCrum N.G., Buckley C.P., Bucknall C.B., Principles of Polymer Engineering, 

       Oxford University Press, Oxford and New York, 1997 

 

[25]Mooney M., Journal of Applied Physics 11, 582-592, 1940 

 

[26]Pecora R., Journal of Nanaoparticle Reasearch 2: 123-131, 2000  

 

[27]Pellicer J., Manzanares J.A., Zuniga J., Utrillas P., Fernandez J., Journal of Chemical  

      Education 78, 263-267, 2001 

 

[28]Poddar P., Wilson J.L., Srikanth H., Yoo J.H., Wereley N.M., Kotha S., Bargohouty   

      L., Radhakrishnan R., Journal of Nanoscience and Nanotechnology 4, 192-196, 2004 

 

[29]Pusey P.N., Tough, R.J.A., Dynamic Light Scattering: Applications of Photon  

     Correlation Spectroscopy, ed. Pecora, R., 85-179, Plenum Press, New York and                                            

     London, 1985  

 

[30]Reese S., Wriggers P., Constitutive Models for Rubber, 13-21, 1999 

 

[31]Rivlin R.S., Royal Society of London-Philosophical Transactions Series A 241, 379- 

      397, 1948 

 

[32]Rosensweig, R.E., Ferrohydrodynamics, Cambridge University Press, Cambridge,  

      1985. 

 

[33]Rudnitsky V.A., Djakovich V.V., Materials Science Forum v210-213, 391-396, 1996 

 

[34]Schiessel H., Metzler R., Blumen A., Nonnenmacher T.F., Journal of  Physics A:  

      (Mathematical and General) 28 6567-6584 (1995). 

 



 144 

[35]Shaumeyer, J.N., Briggs, M., Gammon, R., Applied Optics 32, 3871-3879,1993 

 

[36]Stadler L.M., Sepiol B., Kantelhardt J.W., Zizak I., Grubel G., Vogl G., Physical   

      Review B 69, Art.No.224301, 2004 

 

[37]Tanaka T, Hocker L.O., Benedek G.B., Journal of Chemical Physics 59, 5151-5159,  

      1973 

 

[38]Treloar L.R.G. Transactions of the Faraday Society 39, 241-246, 1943 

 

[39]Weitz D.A., Krall, A.H., Physical Review Letters 80, 778-781, 1998 

 

[40]West B., Bologna M., Grigolini P., Physics of Fractal Operators, Springer-New York,  

       2003 

 

[41]Wiedmann A., Kammel M., Hoell A., Journal of Magnetism and Magnetic Materials 

       272, 1487-1489, 2004 

 

[42]Yamazaki H., Ishikawa T., Journal of Applied Crystallograpy 37, 48-51, 2004 

 

[43]Yang F., Journal of Physics D 36, 2417-2420, 2003 

 

[44]Zhou, G.Y., Li, J.R., Smart Materials and Structures 12 859-872, 2003 

 

 

 

 


