Python Channel Access Bindings

Review of a conversation
on EPICS tech-talk



4 different interfaces

CaPython (FNAL)
http://www-dOonline.fnal.gov/iwww/groups/ctl/epics/epics_python.html
A faithful reproduction of the low level channel access API.

PythonCA (KEK) / NPEI (PSI)
http://www-acc.kek.jp/EPICS_Gr/products.html
http://controls.web.psi.ch/cgi-bin/twiki/view/Main/NewPythonEpicsinterface
Also based on a low level API.

EpicsCA (UChicago)
http://cars9.uchicago.edu/~newville/Epics/Python/
Apparently inspired by EZCA (“easy CA”) with higher level API

Cothread (Diamond)
http://controls.diamond.ac.uk/downloads/python/cothread/
Also EZCA inspired, with integrated coroutine based threading model.


http://www-d0online.fnal.gov/www/groups/ctl/epics/epics_python.html
http://controls.diamond.ac.uk/downloads/python/cothread/
http://cars9.uchicago.edu/~newville/Epics/Python/
http://www-acc.kek.jp/EPICS_Gr/products.html
http://controls.web.psi.ch/cgi-bin/twiki/view/Main/NewPythonEpicsInterface

Important Differences

« SWIG vs ctypes (vs raw C)

e ctypes Is only relatively recently mature enough to be
useful. Advantages are no need to compile, API can be
version independent.

 Documentation
* Abstraction provided by API



Notes on ctypes

Easy interfacing to dynamically loaded .so files

Need to translate C declarations Into ctypes
definitions, no automatic tools for this.

If .so APl remains stable then same Python
source will work across multiple versions of
library and Python.

No compilation required, installation is easy!

Interfacing to C++ Is a total nightmare, probably
easier to write a C++ Python wrapper.



Tech Talk

High level vs low level API

Is it worth creating a (another?) standard
Python CA wrapper library?

Datatype support is important: character arrays
as strings, for example!

Things need to work on 64-bit Linux!

Channel access length handling needs work:

* |t would be good if waveform.NORD generated
updates when it changes.



Cothread API — an “abstract” API

caput(pvs, values,
repeat_value=False,
timeout=5,
wait=False,
throw=True)

caget(pvs,
timeout=5,
datatype=None, format=FORMAT_RAW,
count=0,
throw=True)

camonitor(pvs, callback,
events=DBE_VALUE,
datatype=None, format=FORMAT_RAW,
count=0,
all_updates=False,
notify_disconnect=False)



Issues to Discuss

Do we need a “standard” Python API?

 Would allow shared tools to be built on top of it.

 What kind of APl do we want? Abstract or low
level? Abstract hides details which may be
wanted In certain applications.

* Toolkit / framework / GUI integration?

* Threading: asynchronous threads or
cothreads? Affects framework integration.



What now?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

