

Python Channel Access Bindings

Review of a conversation
on EPICS tech-talk

4 different interfaces
CaPython (FNAL)

http://www-d0online.fnal.gov/www/groups/ctl/epics/epics_python.html
A faithful reproduction of the low level channel access API.

Cothread (Diamond)
http://controls.diamond.ac.uk/downloads/python/cothread/
Also EZCA inspired, with integrated coroutine based threading model.

EpicsCA (UChicago)
http://cars9.uchicago.edu/~newville/Epics/Python/
Apparently inspired by EZCA (“easy CA”) with higher level API

PythonCA (KEK) / NPEI (PSI)
http://www-acc.kek.jp/EPICS_Gr/products.html
http://controls.web.psi.ch/cgi-bin/twiki/view/Main/NewPythonEpicsInterface
Also based on a low level API.

http://www-d0online.fnal.gov/www/groups/ctl/epics/epics_python.html
http://controls.diamond.ac.uk/downloads/python/cothread/
http://cars9.uchicago.edu/~newville/Epics/Python/
http://www-acc.kek.jp/EPICS_Gr/products.html
http://controls.web.psi.ch/cgi-bin/twiki/view/Main/NewPythonEpicsInterface

Important Differences

● SWIG vs ctypes (vs raw C)
● ctypes is only relatively recently mature enough to be

useful. Advantages are no need to compile, API can be
version independent.

● Documentation
● Abstraction provided by API

Notes on ctypes

● Easy interfacing to dynamically loaded .so files
● Need to translate C declarations into ctypes

definitions, no automatic tools for this.
● If .so API remains stable then same Python

source will work across multiple versions of
library and Python.

● No compilation required, installation is easy!
● Interfacing to C++ is a total nightmare, probably

easier to write a C++ Python wrapper.

Tech Talk

● High level vs low level API
● Is it worth creating a (another?) standard

Python CA wrapper library?
● Datatype support is important: character arrays

as strings, for example!
● Things need to work on 64-bit Linux!
● Channel access length handling needs work:

● It would be good if waveform.NORD generated
updates when it changes.

Cothread API – an “abstract” API

caput(pvs, values,
repeat_value=False,
timeout=5,
wait=False,
throw=True)

caget(pvs,
timeout=5,
datatype=None, format=FORMAT_RAW,
count=0,
throw=True)

camonitor(pvs, callback,
events=DBE_VALUE,
datatype=None, format=FORMAT_RAW,
count=0,
all_updates=False,
notify_disconnect=False)

Issues to Discuss

● Do we need a “standard” Python API?
● Would allow shared tools to be built on top of it.

● What kind of API do we want? Abstract or low
level? Abstract hides details which may be
wanted in certain applications.

● Toolkit / framework / GUI integration?
● Threading: asynchronous threads or

cothreads? Affects framework integration.

What now?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

